# Л. В. Лобова

# ЭЛЕКТРОФЛОКИРОВАННЫЕ МАТЕРИАЛЫ С ЛОКАЛЬНЫМ НАНЕСЕНИЕМ ВОРСА

Монография

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна»

# Л. В. Лобова

# ЭЛЕКТРОФЛОКИРОВАННЫЕ МАТЕРИАЛЫ С ЛОКАЛЬНЫМ НАНЕСЕНИЕМ ВОРСА

Монография

Санкт-Петербург 2019 УДК 677.027.653(075.8) ББК 37.237.1я73 Л68

#### Рецензенты:

доктор технических наук, профессор, заведующая кафедрой Омского государственного технического университета Г. М. Андросова;

доктор технических наук, профессор, заведующая кафедрой Ивановского государственного политехнического университета О. В. Метелева

Лобова, Л. В.

**Л68** Электрофлокированные материалы с локальным нанесением ворса: монография / Л. В. Лобова – СПб.: ФГБОУВО «СПбГУПТД», 2019.-380 с.

#### ISBN 978-5-7937-1790-8

Создание материалов с рельефными узорами или рисунками из ворса – один из перспективных методов электрофлокирования. Используя ворс различных цветов и геометрических размеров, комбинируя печать ворсом с печатью красками, можно создавать изделия, удовлетворяющие различным эстетическим требованиям. Технология электрофлокирования очень разнообразна. Флокируют не только текстиль, бумагу, синтетические материалы, но и металл, дерево, керамику. Оборудование для флокирования также чрезвычайно разнообразно: от простых ручных устройств для малых предприятий с небольшими капиталовложениями до полностью автоматизированных линий с компьютерным управлением.

Данная публикация представляет собой всестороннее изучение технологии получения материалов с локальным нанесением ворса с декоративной целью или для создания материалов технического назначения. В ней собраны исследования, проводившиеся автором на протяжении двух десятков лет, ставившие целью создание в нашей стране технологии и оборудования для печатания ворсом. Особое внимание уделено разработке водостойких клеёв для локального флокирования как при прямой печати, так и при печати методом термопереноса ворса.

Монография предназначена для широкого круга специалистов в области технологий текстильной и лёгкой промышленности, студентов и аспирантов соответствующих направлений обучения.

УДК 677.027.653(075.8) ББК 37.237.1я73

ISBN 978-5-7937-1790-8

© ФГБОУВО «СПбГУПТД», 2019

© Лобова Л. В., 2019

# ОГЛАВЛЕНИЕ

|        |                                         |           | Е СВЕДЕНИ          |                     |        |           |                                         |
|--------|-----------------------------------------|-----------|--------------------|---------------------|--------|-----------|-----------------------------------------|
| COCTA  | ВЕ, СТРУ                                | КТУРЕ     | И ИССЛЕДО          | <b>DBAH</b>         | иях с  | ВОЙСТ     | В                                       |
| ЭЛЕКТ  | РОФЛОК                                  | ИРОВАН    | ных мат            | ЕРИАЈ               | IOB    |           |                                         |
| СЛОКА  | АЛЬНЫМ                                  | HAHEC     | ЕНИЕМ ВО           | PCA                 |        |           |                                         |
| 1.1. 0 | Основа для                              | флокиро   | вания и ворс.      |                     |        |           |                                         |
|        |                                         |           | еев для печат      |                     |        |           |                                         |
|        |                                         |           | ования к клея      |                     |        |           |                                         |
|        |                                         |           |                    |                     |        |           |                                         |
| 1      | .2.3. Харак                             | тер реоло | огических сво      | йств во             | одно-д | исперсис  | нных                                    |
|        |                                         |           |                    |                     |        |           |                                         |
| 1      |                                         |           | ва клеев на ос     |                     |        |           |                                         |
|        | флоки                                   | рованны   | х материалов       | . Пути <sub>1</sub> | разраб | отки клес | ев                                      |
|        |                                         | -         | в с локально н     |                     |        | -         |                                         |
|        |                                         |           | ов с многоцве      |                     |        |           |                                         |
| •      |                                         | • /       | из ворса           |                     |        |           |                                         |
|        |                                         |           | гильных мате       | -                   | -      | -         |                                         |
|        |                                         |           |                    |                     |        |           |                                         |
| 1.5.   | Анализ ст                               | руктуры   | и свойств          | теплои              | золяци | онных и   | иатериа-                                |
| пов    |                                         |           |                    |                     |        |           |                                         |
|        |                                         | '         | Е ДЛЯ ЭЛЕ          |                     |        |           |                                         |
|        |                                         |           | <b>ы для экс</b> і |                     |        |           |                                         |
|        | , ,                                     |           | СТВ ИСХО,          | 1                   |        |           |                                         |
|        |                                         |           | АЛЬНО НАІ          |                     |        |           |                                         |
|        | _                                       |           | материалы          | И                   | ИХ     | харак     | геристи-                                |
|        |                                         |           |                    |                     |        |           |                                         |
|        | -                                       |           | леевых комп        |                     |        | _         |                                         |
| 2      |                                         |           | и материалов       |                     |        |           |                                         |
|        |                                         |           | окирования         |                     |        |           |                                         |
|        |                                         | -         | і, применявш       |                     |        |           | • • • • • • • • • • • • • • • • • • • • |
|        |                                         |           | ных установо       |                     |        |           |                                         |
|        |                                         | _         | окирования         |                     |        |           |                                         |
| 2      | 2.1. Лабор                              | -         | автоматизиро       |                     | •      |           |                                         |
|        | для                                     |           | цветного           | флоі                | кирова | кин       | УМФ-                                    |
|        |                                         |           |                    |                     |        |           |                                         |
| 2      | 2.2.2.                                  | Ручная    | устан              | ювка                |        | для       | печа-                                   |
|        | • • • • • • • • • • • • • • • • • • • • |           |                    |                     |        |           |                                         |
| 2.3. N | Летодики и                              | приборь   | п для исследо      | вания с             | войств | в ворса,  |                                         |
| К      | лея                                     | И         | [                  | клее                | вых    |           | плё-                                    |
| нок    |                                         |           |                    |                     |        |           |                                         |

| 2.3.1. Оценка свойств ворса                                | 77  |
|------------------------------------------------------------|-----|
| 2.3.2. Методики приготовления и оценки свойств клеевых     |     |
| композиций и отдельных ингредиентов                        | 80  |
| 2.3.3. Методики приготовления и исследования свойств       |     |
| клеевых плёнок                                             | 83  |
| 2.4. Методы и приборы для исследования свойств текстильных |     |
| материалов                                                 | 86  |
| 2.4.1. Методы определения линейных размеров, толщины       |     |
| и поверхностной плотности                                  | 86  |
| 2.4.2. Методы и приборы для механических испытаний         | 87  |
| 2.4.3. Методы и приборы для испытаний физических свойств   | 87  |
| 2.4.4. Методы определения износостойкости флокированных    | 90  |
| материалов2.5. Характеристики промышленного оборудования   | 90  |
| · · · · · · · · · · · · · · · · · · ·                      |     |
| и вспомогательные методики, использованные                 | 92  |
| в исследованиях                                            | 92  |
| ДЛЯ ПРЯМОЙ И ТЕРМОПЕРЕНОСНОЙ ПЕЧАТИ ВОРСОМ                 | 93  |
| 3.1. Модификация воднодисперсионных клеевых композиций     | 7.  |
| для улучшения печатно-технических свойств                  | 93  |
| 3.1.1. Модификация клеевых композиций двух-                | ).  |
| и трёхатомными спиртами                                    | 96  |
| 3.1.2. Исследование факторов устойчивости дисперсных       |     |
| систем, стабилизированных эмульгатором смешанного          |     |
| действия                                                   | 100 |
| 3.1.3. Влияние ПАВ различной природы на технологические    | 100 |
| свойства адгезива и эксплуатационные характеристики        |     |
| электрофлокированных материалов                            | 103 |
| 3.1.4. Исследование структурно-химических взаимодействий   | 100 |
| в клеевых композициях, содержащих дополнительно            |     |
| ПАВ                                                        | 106 |
| 3.1.5. Выбор оптимального содержания смеси ПАВ в клеевой   |     |
| композиции                                                 | 112 |
| 3.2. Исследование пенных латексных клеев и полученных      |     |
| на их основе электрофлокированных материалов               | 118 |
| 3.2.1. Оптимизация параметров вспенивания                  | 118 |
| 3.2.2. Влияние состава и свойств пенного клея на свойства  |     |
| флокированного материала                                   | 125 |
| 3.2.3. Оптимизация технологических режимов производства    |     |
| электрофлокированных материалов со вспененным              |     |
| клеем                                                      | 128 |
| 3.3. Разработка основного и временного клеев для создания  | 135 |

|       | электрофлокированных рисунков методом термопереноса                                                                   |    |
|-------|-----------------------------------------------------------------------------------------------------------------------|----|
|       | Bopca                                                                                                                 | 1. |
|       | 3.3.1. Исследование реологических свойств основного клея 3.3.2. Влияние состава основного клея на свойства материалов | 1. |
|       | с флокированным термопереносным рисунком                                                                              | 1  |
|       | 3.3.3. Влияние состава временного клея на качество                                                                    |    |
|       | термопереноса ворса и стабильность свойств                                                                            |    |
|       | термопереносного материала во времени                                                                                 | 1  |
|       | 3.3.4. Влияние температуры и продолжительности                                                                        |    |
|       | подплавления порошков на качество термопереноса                                                                       | 1  |
|       | 3.3.5. Влияние характеристик и технологии применения                                                                  |    |
|       | термопластичных порошков на свойства получаемых                                                                       |    |
|       | материалов                                                                                                            | 1. |
| 3.4.  | Исследование эксплуатационных характеристик текстильных                                                               |    |
|       | электрофлокированных материалов с локальным нанесением                                                                |    |
|       | ворса                                                                                                                 | 1  |
|       | 3.4.1. Оценка износостойкости текстильных материалов                                                                  |    |
|       | с локальным нанесением ворса                                                                                          | 1  |
|       | 3.4.2. Влияние параметров ворсового рисунка на свойства                                                               |    |
|       | электрофлокированного материала                                                                                       | 1  |
|       | 3.4.3. Определение режима стирки материалов                                                                           |    |
|       | с флокированной отделкой                                                                                              | 1  |
| 3.5.  | Исследование газовыделений при сушке и термофиксации                                                                  |    |
|       | акриловых латексных клеев                                                                                             | 1  |
| Глава | 4. ИССЛЕДОВАНИЯ ПО СОЗДАНИЮ                                                                                           |    |
| MHO   | ГОЦВЕТНОГО ЭФФЕКТА ПРИ ЛОКАЛЬНОМ                                                                                      |    |
| HAHE  | ССЕНИИ ВОРСА                                                                                                          | 1  |
| 4.1.  | Оценка разрешающей способности печати ворсом                                                                          |    |
|       | и выработка рекомендаций по изготовлению шаблонов                                                                     | 1  |
| 4.2.  | Расчет смесей (меланжей) ворса для получения                                                                          |    |
|       | флокированной поверхности заданного цвета                                                                             | 1  |
| 4.3.  | Технологические основы создания полутоновых                                                                           |    |
|       | многоцветных флокированных рисунков                                                                                   | 1  |
|       | 4.3.1. Выбор оптимального размера печатного элемента                                                                  |    |
|       | полутонового флокирования                                                                                             | 1  |
|       | 4.3.2. Исследование влияния долевого участия основных                                                                 |    |
|       | цветов на результирующий цвет флокированной                                                                           |    |
|       | поверхности                                                                                                           | 1  |
|       | 4.3.3. Исследование влияния плотности нанесения ворса                                                                 |    |
|       | на цвет флокированной поверхности                                                                                     | 2  |
| 4.4.  | Разработка способов многоцветной полутоновой печати                                                                   |    |
|       | ворсом                                                                                                                | 2  |

| 4.5.  | Технология получения многоцветного печатного рисунка       |     |
|-------|------------------------------------------------------------|-----|
|       | на временной основе                                        | 211 |
|       |                                                            |     |
| Глава | 5. МОДЕЛИРОВАНИЕ СТРУКТУРЫ                                 |     |
|       | СЛЕДОВАНИЕ ЕЕ ВЛИЯНИЯ НА СВОЙСТВА                          |     |
| ФЛОН  | КИРОВАННЫХ МАТЕРИАЛОВ С ЛОКАЛЬНЫМ                          |     |
| HAHE  | ЕСЕНИЕМ ВОРСА                                              | 217 |
| 5.1.  | Математическая модель деформирования флокированной         |     |
|       | ткани при растяжении                                       | 217 |
|       | 5.1.1. Основные сведения по механике деформирования тканей | 217 |
|       | 5.1.2. Математическая модель поведения флокированной       | 217 |
|       | ткани при растяжении по теории осреднения свойств          |     |
|       | многослойных структур                                      | 220 |
|       | 5.1.3. Определение напряженно-деформированного             |     |
|       | состояния ткани методом конечных элементов                 | 221 |
|       | 5.1.4. Идентификации механических характеристик.           |     |
|       | Верификация разработанных методик                          | 224 |
|       | 5.1.5. Возможность применения теории смесей при расчете    |     |
|       | деформаций флокированной тка-                              |     |
| ни    |                                                            | 227 |
|       | 5.1.6. Определение жесткостных характеристик флокированной |     |
|       | ткани по результатам экспериментов на растяже-             |     |
| ние   |                                                            | 229 |
|       | 5.1.7. Определение зависимости жесткостных характеристик   |     |
|       | флокированной ткани от толщины слоя клея                   | 237 |
| 5.2.  | Математическая модель драпируемости флокированной          |     |
|       | ткани                                                      | 238 |
|       | 5.2.1. Математическая модель поведения флокированной       |     |
|       | ткани при изгибе                                           | 238 |
|       | 5.2.2. Численная методика решения задачи отыскания         |     |
|       | перемещений и кривизны образца ткани                       | 243 |
|       | 5.2.3. Методика экспериментального определения             |     |
|       | жесткостных характеристик ткани и клеевого слоя            | 247 |
|       | 5.2.4. Обработка натурных экспериментов и анализ           |     |
|       | разработанной модели                                       | 255 |
|       | 5.2.5. Зависимость кривизны над опорой от толщины          |     |
|       | клеевого слоя                                              | 258 |
|       | 5.2.6. Влияние жёсткости ткани на способность              |     |
|       | к складкообразованию                                       | 259 |

| 5.3.  | Моделирование структуры теплоизоляционного пакета                      |     |
|-------|------------------------------------------------------------------------|-----|
|       | из слоев материала с локально нанесенным ворсом                        | 262 |
|       | 5.3.1. Коэффициент теплопроводности воздуха в структуре                | 263 |
|       | 5.3.2. Коэффициент теплопроводности клея и волокон                     | 273 |
|       | 5.3.3. Влияние мембраны на теплопроводность структуры                  | 275 |
| 5.4.  | Экспериментальная оценка влияния структурных                           |     |
|       | параметров теплоизоляционного флокированного материала на его свойства | 276 |
|       | 5.4.1. Влияние характеристик ворсового слоя на основные                | 270 |
|       | показатели теплоизоляционного материала                                | 277 |
|       | 5.4.2. Влияние вида и расположения мембран на основные                 | 211 |
|       | показатели теплоизоляционного материала                                | 280 |
| Глава | 6. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ                                          |     |
| ПРОП  | ІЕССОВ И ОБОРУДОВАНИЯ ДЛЯ СОЗДАНИЯ                                     |     |
|       | ЕРИАЛОВ С ЛОКАЛЬНЫМ НАНЕСЕНИЕМ ВОРСА                                   | 286 |
| 6.1.  | Рекомендации по разработке рисунков для печати ворсом                  | 286 |
|       | Разработка рекомендаций для нанесения локального                       |     |
|       | флокированного рисунка методом термопереноса                           | 287 |
| 6.3.  | Разработка технологии изготовления велюровых обоев                     | 289 |
|       | 6.3.1. Общее описание технологического процесса                        | 289 |
|       | 6.3.2. Разработка клея для изготовления велюровых обоев                | 294 |
|       | 6.3.3. Исследование процесса пигментирования клеев                     |     |
|       | и печатных составов                                                    | 297 |
| 6.4.  | Конфекционирование теплоизоляционных флокированных                     |     |
|       | материалов и рекомендации по их применению                             | 300 |
|       | 6.4.1. Исследование способов соединения единичных                      |     |
|       | слоев в модули                                                         | 301 |
|       | 6.4.2. Разработка вариантов конфекционирования                         |     |
|       | применительно к области использования                                  | 303 |
| 6.5.  | Разработка технических требований на опытно-                           |     |
|       | промышленное оборудование для многоцветного                            |     |
|       | флокирования                                                           | 310 |
|       | 6.5.1. Разработка дозирующей системы для флокирования                  |     |
|       | в стационарном режиме                                                  | 310 |
|       | 6.5.2. Разработка мини-установок для печати ворсом                     |     |
|       | штучных изделий                                                        | 319 |
| ЗАКЛІ | ЮЧЕНИЕ                                                                 | 326 |
| Списо | к принятых сокращений                                                  | 327 |
|       | ИОГРАФИЧЕСКИЙ СПИ-                                                     |     |
| COK   |                                                                        | 329 |

| Приложение        | <b>A.</b>         | Цветовые              | моде-          |     |
|-------------------|-------------------|-----------------------|----------------|-----|
| ли                |                   |                       |                | 342 |
| Приложение Б. Те  | хнические характ  | еристики основных     |                |     |
| теплоизоляционных | к материалов, при | именяемых в строители | ьстве          | 346 |
| Приложение В. Сх  | ема и порядок ра  | боты на дериватограф  | e              |     |
| системы Ф. Паулик | -И. Паулик-Л.Эр,  | деи                   |                | 350 |
| Приложение Г. Роз | гационный виско   | зиметр «Реотест-2»    |                | 353 |
| Приложение Д. Пр  | имер диаграммы    | измерений тепловых і  | <b>ТОТОКОВ</b> |     |
| и температуры     |                   |                       |                | 356 |
| Приложение Е. Пр  | имер протокола и  | измерений теплопрово  | дности         | 357 |
| Приложение Ж. Ф   | орма протокола д  | ля расчета коэффицие  | нта            |     |
| <b>1</b>          |                   |                       |                | 358 |
| Приложение И. Ме  | етодика работы и  | описание прибора      |                |     |
| Виртестер         |                   |                       | FF-            |     |
| 21                |                   |                       |                | 359 |
| Приложение К. Зна | ачения относител  | ьных оптических плот  | тностей        |     |
|                   |                   |                       |                | 362 |
| -                 |                   | ема линии для произв  |                |     |
| 1                 |                   |                       |                | 363 |
| _                 |                   | зированного оборудог  |                |     |
|                   |                   |                       |                | 365 |
|                   |                   | сированных штучных    |                |     |
| , ,               |                   |                       |                | 368 |
| -                 |                   | цветного флокирован   |                |     |
| •                 |                   |                       |                | 373 |
| Приложение Р. На  | стольная установ  | ка УФ-1               |                | 379 |

#### **ВВЕДЕНИЕ**

Создание материалов с узорами или рисунками из ворса — один из перспективных методов электрофлокирования. Используя ворс различных цветов и геометрических размеров, комбинируя печать ворсом с печатью красками, можно создавать изделия, удовлетворяющие различным эстетическим требованиям.

Высокая производительность, использование ворса из искусственных и синтетических волокон, возможность полной автоматизации производства ставят этот способ в ряд перспективных способов декоративной отделки.

В настоящее время технология электрофлокирования очень разнообразна. Флокируют металл, дерево, керамику, текстиль, бумагу, синтетические материалы. Для каждой основы можно подобрать соответствующий клей и ворс. Оборудование для флокирования также чрезвычайно разнообразно: от простых ручных устройств, предназначенных для малых предприятий с небольшими капиталовложениями, до полностью автоматизированных линий с компьютерным управлением.

Данная публикация представляет собой всестороннее изучение и разработку технологии получения материалов с локальным нанесением ворса с декоративной целью или для создания материалов технического назначения. В ней собраны исследования, проводившиеся автором на протяжении двух десятков лет, ставившие целью создание в нашей стране технологии и оборудования для печатания ворсом. Особое внимание уделено разработке водостойких клеёв для флокирования на текстильных материалах как при прямой печати, так и при печати методом термопереноса ворса. Проведено моделирование взаимосвязи структуры материалов, в том числе доли площади поверхности, занятой ворсом, и их основных эксплуатационных характеристик.

# Глава 1. СОВРЕМЕННЫЕ СВЕДЕНИЯ О СЫРЬЕВОМ СОСТАВЕ, СТРУКТУРЕ И ИССЛЕДОВАНИЯХ СВОЙСТВ ЭЛЕКТРОФЛОКИРОВАННЫХ МАТЕРИАЛОВ С ЛОКАЛЬНЫМ НАНЕСЕНИЕМ ВОРСА

Технология флокирования, известная с глубокой древности, переживала периоды развития и спадов. 3000 лет назад в Китае для облагораживания текстильных изделий использовали натуральные волокна, которые насыпали на смолу, служившую клеем. В XII веке подобная техника применялась в Нюрнбергском монастыре. Клей печатали на текстильный материал в виде рисунка с помощью резных деревянных плит, затем на клей насыпали измельченные натуральные волокна. В замках долины Луары можно увидеть прекрасные образцы обоев с ворсом, изготовленные в XIX веке.

В первой половине XX века в США, а затем в Западной Европе и Японии флокирование стало возрождаться на новом уровне. Началось изготовление оборудования для электрофлокирования, т. е. для флокирования в электрическом поле. Электрофлокирование стали применять для промышленного изготовления изделий технического назначения, материалов для одежды и многих других целей. Примерно тогда же, с середины прошлого века, начало развиваться и промышленное изготовление материалов с узорами из ворса. Например, фирмами «Элофлок» (ФРГ) и «Хуг» (Швейцария) были созданы установки для отделки тканей различной толщины способом фотофильмпечати, печати ворсом, а также их комбинацией [1], [2]. Однако первоначальное увлечение этим бизнесом из-за кажущейся простоты технологии выплеснуло на рынок в 50–60-е годы XX века большое количество продукции низкого качества, в основном флокированных одежных тканей. Поэтому в 60-е годы в Европе нашло признание флокирование преимущественно на бумаге и пластике.

В 60–70-е годы бурно развивалась химия полимеров, совершенствовалось производство химических волокон, улучшалось качество ворса и развивалось производство синтетических клеев. В 70-е годы получила развитие приборная база для оценки свойств сырья для электрофлокирования (ворс, клей) и готовой продукции, начали развиваться научные основы технологии, что позволило с более глубоких позиций оценить задачи по достижению нового уровня качества. К концу 70-х годов в мире был достигнут уровень потребления ворса (флока) примерно 25 000 тонн в год, к концу 80-х годов – 50 000 тонн в год, к середине 90-х – 60 000 тонн. Затем наметился некоторый спад, который объясняется началом использования в электрофлокировании микроволокон, имеющих линейную плотность 0.09–0.2 текс. Это снизило поверхностную плотность ворсового слоя флокированных материалов, но не является показателем спада производства.

Потребительские свойства флокированных полотен значительно улучшились благодаря совершенствованию техники и технологии, а также получению клеевых композиций с заданными свойствами.

В 1981 году в Европе был создан Союз промышленности флокирования, который объединил ведущие фирмы в области собственно технологии флокирования, а также производителей оборудования, ворса и клея [3]. С 1975 года в Германии издается специальный журнал «Flock». С 1975 года регулярно проводятся международные симпозиумы по электрофлокированию. Существуют также Американская, Китайская и Японская ассоциации флокирования.

В общем объеме выпускаемых сейчас в мире флокированных материалов наибольшую долю составляет текстиль для отделки интерьера. Наиболее важны флокированные мебельные и обивочные ткани, выпуск которых только в США составляет 150 млн погонных метров в год, из которых 70 % экспортируется в Европу и Азию. Американская компания «Микрофайберс», например, производит мебельные флокированные материалы уже более 60 лет. Вначале это были однотонные ткани с блестящей поверхностью. Теперь выпускают полотна различных фактур с использованием блестящих и матированных волокон, однотонные и с печатным рисунком. Флокированные поверхности могут получать дополнительную отделку: тиснение, смятие, «гравирование» с помощью луча лазера [4], напыление термопластичных порошков с последующим прессованием для создания рисунка [5]. Мебельные флокированные материалы имеют сертификат экологической безопасности, долговечны в использовании, легко поддаются чистке.

Особое место в производстве обивочных декоративных материалов вот уже 40 лет занимает флокированная пряжа. Ткани из флокированной пряжи широко используются для отделки сидений в автомобилях, самолетах и успешно конкурируют с искусственной и натуральной кожей благодаря высокой износостойкости, объемности, воздухо- и паропроницаемости. В Америке получило широкое распространение флокирование обратной стороны штор для снижения прозрачности и улучшения термоизоляции, а также производство одеял с двухсторонним флокированием.

Печать ворсом, как и сплошное флокирование, не имеет ограничения в области применения. Для получения ворсового узора на основу наносят клеевой рисунок или узор. Затем основа с клеем помещается на плоский электрод, образующий электростатическое поле. Ворсинки со второго электрода, заряжаясь, движутся в поле по направлению к основе и внедряются в клеевой слой. После термофиксации последнего образуется ворсовый узор, соответствующий клеевому. Так получают ворсовый узор одного цвета. Можно выполнять и многоцветные флокированные рисунки, сочетая ворс разных цветов. Для этого, так же как и в первом случае, покрывают клеем всю площадь ворсового рисунка и по очереди наносят ворс нужных цветов. Для того чтобы он попадал только на определенные элементы рисунка, флокирование ведут через специальные ограничительные шаблоны. Такие материалы используются наряду с жаккардовыми тканями и обоями. Флокированные рисунки обогащают возможности художников и дизайнеров при колористическом оформ-

лении витрин, стендов, выставочных интерьеров. Красивы узорчатые ворсовые подарочные ленты, нарядные упаковки, поздравительные открытки.

Печатание флоком на тканях блузочного, платьевого и костюмного ассортимента для женской одежды занимает второе место по объемам производства. Благодаря высокой укрывистости и насыщенным краскам можно даже по темному фону получать исключительные цветовые контрасты. Для придания флокированным материалам желаемого оптического эффекта проводят структурирование волокон и другие специальные обработки. Ведущими в производстве таких материалов являются предприятия Италии, Японии, Тайваня, Индии и США. Флокироваться могут даже самые легкие материалы. Дефекты, возникающие, например, при вышивании, отсутствуют при флокировании. Кроме того, при флокировании узоров достигается объемный эффект. Флокированные материалы используются в спортивной и детской одежде. Символика в виде ворсовых рисунков часто наносится на престижную спортивную одежду футболистов, гонщиков, теннисистов, игроков в гольф.

Тенденция увеличения доли текстиля, используемого в технических целях, наблюдаемая в последние годы, характерна и для технологии электрофлокирования. Флок решает самые разные технические задачи: снижение шума (тахометрические валы, радиоустройства, покрытия стен в помещениях звуковых студий); достижение исключительных фрикционных и уплотняющих свойств (оконные уплотнители); уменьшение размеров фильтровальных устройств благодаря увеличению рабочей поверхности флокированных фильтрованных элементов; уменьшение водного конденсата (флокирование палаточных полотен, внутренних поверхностей жилых автофургонов, складских помещений); теплоизоляция (например, печи для саун).

### 1.1. Основа для флокирования и ворс

Выбор критериев качества основы зависит от требований, предъявляемых к конечному продукту. Наиболее распространенными здесь являются следующие: формоустойчивость или, наоборот, большая эластичность, прочность на разрыв, минимальная усадка. Важным требованием является хорошая адгезия к используемому клею.

Ворс (флок) различают молотый и резаный. Молотый флок получают в результате помола хлопковых, вискозных, полиэфирных волокон в специальных мельницах. Ворсинки получаются неоднородными по длине, и после флокирования поверхность становится похожей на замшу. Этим материалам часто придают эффект смятия.

Резаный ворс — это равномерно нарезанный, окрашенный и специально обработанный жгут из химических волокон. Наиболее распространен ворс из полиамидных, полиэфирных и вискозных волокон. Полиамидный ворс имеет хорошее упругое восстановление, высокую износостойкость и красивый

внешний вид. Полиэфирный ворс имеет хорошую стойкость к истиранию, стоек к действию влаги и УФ-лучей, но трудно окрашивается. Вискозный ворс хорошо окрашивается, но для него характерна сминаемость. Технология и качество изделий, получаемых по методу электрофлокирования, существенно зависят от равномерности ворса по длине, соотношения длины и толщины ворса, прямолинейности и формы среза ворсинок. Долгое время для производства ворса использовали обычные волокна (включая отходы), используемые для других текстильных технологий. После резки и физикохимической обработки получались изогнутые ворсинки. Применение такого ворса приводит к резкому падению плотности его нанесения, особенно при небольших углах отклонения от вертикали, по сравнению с прямым, неизогнутым ворсом [6]. Однако около 30 лет назад производители ПА 6.6 стали адаптировать свое волокно к производству ворса. Повысив кристалличность волокна, добились получения неизогнутых ворсинок.

В 70-е годы XX века были разработаны стандарты на качество ворса и развилась приборная база для оценки его свойств (электропроводимости, сыпучести, прыгучести, однородности резки, гигроскопичности) [7]. Сейчас многие предприятия — производители ворса сертифицированы на соответствие стандартам ISO 9000.

Используемые соотношения длины и толщины ворса и соответствующие области применения указаны в maбл. 1.1 и 1.2.

| •                | •        |                                                                                |  |
|------------------|----------|--------------------------------------------------------------------------------|--|
| Линейная плот-   | Диапазон | Преимущественное использование                                                 |  |
| ность, текс      | длин, мм |                                                                                |  |
| 0.09; 0.11; 0.15 | 0.5-0.7  | Одёжные, обивочные материалы, гардины Изготовление надписей, рисунков, обувных |  |
| 0.17; 0.22       | 0.5-0.8  |                                                                                |  |
| 0.33             | 0.5-1.0  |                                                                                |  |
| 0.67             | 0.5–1.5  | материалов, упаковки, деталей автомобилей                                      |  |
| 2.2              | 2.0-3.0  | II.                                                                            |  |
| AA               | 2 0-4 0  | Напольные покрытия, коврики                                                    |  |

Таблица 1.1. Размеры и области применения полиамидного ворса [8]

Для резки жгута при изготовлении ворса используются высокопроизводительные прецизионные ворсорезательные машины. Благодаря использованию коррозионностойких материалов могут нарезаться увлажненные жгуты.

Процесс приготовления ворса включает в себя следующие операции: формирование жгута, его резку, отмывку, крашение, активацию — обработку для придания поверхностной проводимости и разделяемости, отжим, сушку, просеивание и смешивание ворса. Технологическая линия для подготовки ворса состоит из следующих основных элементов: красильно-отделочного аппарата, центрифуги для отжима, сушилки и калибровочного устройства.

Таблица 1.2. Рекомендуемые соотношения между линейной плотностью

и длиной ворса [9]

| Линейная        | Длина, мм            |             |           |
|-----------------|----------------------|-------------|-----------|
| плотность, текс | полиакрилонитрильные | полиамидные | вискозные |
| 0.06            | 0.5–1.0              | -           | 0.5       |
| 0.09            | -                    | -           | 0.5-0.6   |
| 0.13            | 0.5–1.5              | -           | -         |
| 0.16            | -                    | 0.5-0.8     | -         |
| 0.17            | -                    | -           | 0.3-0.8   |
| 0.22            | 1.0–1.5              | -           | -         |
| 0.33            | 1.0–2.5              | 0.5-1.0     | 0.3–1.5   |
| 0.56            | -                    | -           | 1         |
| 0.67            | -                    | 0.5–1.5     | -         |
| 1.1             | -                    | 1.5-2.0     | -         |
| 1.7             | -                    | 1.5–2.5     | -         |
| 2.2             | -                    | 2.0-3.0     | -         |
| 2.8             | -                    | -           | 2–3       |
| 4.4             | -                    | 2–4         | -         |

Активацию ворса можно проводить и в жгуте [10]. Для активации используют поверхностно-активные вещества, электролиты и кремнийорганические соединения. Теоретические аспекты химической обработки ворса для электрофлокирования наиболее полно рассмотрены в работах [6], [11], [12]. Для сохранения свойств ворс необходимо хранить при температуре 15–25 °C и относительной влажности воздуха 60–65 %.

#### 1.2. Состав и свойства клеев для печати ворсом

#### 1.2.1. Основные требования к клеям

При выборе клеев для электрофлокирования учитывают их электропроводимость, жизнестойкость, адгезию к основе и ворсу. Клеи, применяемые для материалов с локальным нанесением ворса, обладают, кроме того, рядом особенностей.

Они должны обеспечивать высокую плотность ворсового покрова, достаточную прочность закрепления ворса, эластичность и мягкость материала. Для большинства изделий с флокированными узорами важна водостойкость клеевого соединения, так как при их использовании возможны стирки.

При выборе клея нужно учитывать возможность печатания им при помощи шаблонов. В первую очередь это обусловлено реологическими свойствами клеевой композиции. Для нанесения клеевого рисунка необходимо, чтобы клей продавливался через шаблон и образовывал четкий отпечаток на основе, не растекаясь по ней. Смачивая гигроскопическую текстильную основу

и образуя равномерную пленку, клей в то же время не должен пропитывать ее. В противном случае при термофиксации склеивается основа и в большой степени увеличивается жесткость готового материала.

Клей должен обладать хорошей когезией, но не быть тягучим. Повышенная вязкость его недопустима. Это не только затрудняет проникновение при флокировании ворсинок в клей, но и осложняет печать: клей плохо проходит сквозь сетку, клеевая пленка рвется и вытягиваются клеевые нити. Особенно портится картина печати, если основа рыхловолокнистая.

Клей не должен образовывать пузырей в момент отделения шаблона от печатаемой основы, а также при термофиксации. Одно из основных требований к клею — его легкая счищаемость с шаблона без повреждения трафаретного слоя. Это одна из основных технологических операций, и по ней можно судить о пригодности клея для печати. Если шаблоны не очистить как следует, рисунок будет искажен.

Иногда клей окрашивают в цвет ворса, чтобы таким образом создать оптический эффект высокой плотности ворсового покрова, что особенно важно при печати на темных и эластичных основах. При нанесении клеевого рисунка необходимо тщательно подбирать основу, клей и сетку шаблона.

#### 1.2.2. Состав клеев

В производстве электрофлокированных материалов используют клеи, содержащие в качестве пленкообразователей термопластичные и термореактивные полимеры. Термореактивные полимеры — фенолоформальдегидные, эпоксидные и другие смолы — чаще используются как добавки к термопластичным полимерам для увеличения адгезии. Самостоятельно в качестве пленкообразователей они используются для специальных целей, при флокировании металлов, дерева, пластмасс, стекла. Для флокирования текстильных материалов такие клеи, несмотря на их высокую адгезию ко всем видам волокон и высокую водостойкость, не применяются, так как дают очень жесткие пленки.

Основой клеев для флокирования текстиля служат термопластичные полимеры — поливинилхлорид, полиакрилаты, полиуретаны, поливинилацетат, сополимеры этилена с винилацетатом и др.

Для производства флокированных изделий с узорами из ворса были испробованы клеевые композиции на растворителях (главным образом уретановые [13]), пластизоли и водно-дисперсионные клеи. При использовании пластизолей получают эластичные материалы с мягким грифом, но слабоустойчивые к химической чистке. Широкое распространение получили клеевые композиции на основе поливинилхлорида [CH<sub>2</sub> – CHCl]<sub>п</sub> и его производных для изготовления флокированных напольных покрытий. Для уменьшения жесткости и повышения термостабильности в ПВХ-клеи вводят пластификаторы и стабилизаторы. Введение пластификаторов (эфиры фталевой и себациновой

кислот) дает возможность термообрабатывать клеи при температуре 150–170 °C 5–15 мин. Пластификаторы снижают температуру текучести полимера, и клеевая пленка образуется при пониженной температуре, в меньшей степени вызывая старение полимера.

В качестве стабилизаторов применяются кальциевая, оловянная, бариевая и другие соли стеариновой кислоты. Приготовление клея осуществляют обычно в две стадии: готовят ПВХ-пасту (пластизоль), а затем непосредственно перед использованием вводят в неё отвердители — замещенные фенолы, полиамидные олигомеры, полиизоцианаты [14].

ПВХ-клеи могут применяться для сплошного флокирования, когда многоцветный рисунок создается непосредственно в зоне нанесения ворса с помощью шаблонов (напольные покрытия, декоративные плитки). В результате миграции пластификатор при длительном хранении проступает на изнаночной стороне материала или расплывается на лицевой. Недостаток этих клеев заключается в трудности мойки и чистки шаблонов, а преимущество — в доступности и сравнительно низкой цене.

Применение клеев на органических растворителях постоянно сокращается из-за токсичности и высокой пожароопасности. В настоящее время в качестве основы клеев для печати ворсом применяют преимущественно водные дисперсии полимеров. Они обеспечивают высокую устойчивость к стирке и чистке. Мягкость и эластичность таких материалов выше, чем на клеях с растворителями.

Водные дисперсии не горят, поскольку не содержат растворителя, физиологически безвредны. Все используемые инструменты, в том числе и шаблоны, легко очищаются водой. Водные клеи снижают или полностью исключают расходы на вытяжную вентиляцию и рекуперацию растворителей. Облегчена очистка сточных вод, улучшаются санитарно-гигиенические условия работы.

Полимерные дисперсии представляют собой молочно-белые жидкости со слабым запахом. Примерный состав промышленных полимерных дисперсий следующий (мас. ч.) [15]:

| Полимер | 40–50 | Эмульгатор2— |      |  |
|---------|-------|--------------|------|--|
| Вода    | 55–36 | Стабилизатор | 3–10 |  |

Эмульгаторами служат ПАВ: неионогенные (отечественные продукты  $O\Pi$ –4,  $O\Pi$ –7,  $O\Pi$ –10, оксиэтилированные алкилфенолы) и ионогенные. При концентрировании дисперсий вязкость возрастает примерно пропорционально квадрату концентрации.

Поливинилацетатные клеи ограниченно применяются для флокирования текстильных материалов, но подходят для флокирования бумажной основы [16]. Поливинилацетат сам по себе является водостойким полимером, однако в дисперсиях ПВА в качестве эмульгатора и защитного коллоида при-

сутствует поливиниловый спирт, хорошо растворимый в воде и снижающий водостойкость клеевых соединений.

Главное преимущество *полиуретановых клеев* заключается в образовании прочной, мягкой и эластичной пленки. Молекулы полиуретанов состоят из аминоэфирных (уретановых) групп -N-C-O-, связанных метиленовыми цепочками. Конденсацией изоцианатов с полиэфирами многоатомных спиртов и двухосновных кислот получают каучукообразные полиуретаны с очень гибкими (из-за эфирных группировок) молекулярными цепями.

Интерес представляют клеи из полиуретановых лактексов. Латексы получают диспергированием полимера в водном растворе кислоты, во время которого третичные атомы азота в полимере переходят в положительно заряженные ионы и обеспечивают стабильность латекса. Прочность пленок полиуретановых дисперсий высока даже без модификации, поскольку для ионизированных макромолекул характерно сильное межмолекулярное воздействие. Пленка из полиуретановых дисперсий быстро высыхает и отличается высокой адгезией к целлюлозным и другим волокнистым материалам. Недостатком уретановых клеев является дефицитность сырья и сравнительно высокая цена.

Акриловые клеи характеризуются высокой адгезией к различным материалам, обеспечивают прочность и долговечность клеевым соединениям, малотоксичны. Особенность акриловых дисперсий — внутренняя пластификация сополимеров, не снижающаяся в процессе эксплуатации [17]. Этим они выгодно отличаются от более дешевых поливинилацетатных дисперсий, которые при нормальной температуре неспособны к образованию сплошной пленки и поэтому нуждаются в пластификаторах, из-за миграции которых пленка быстро стареет и делается хрупкой. Акрилаты начинают проявлять пленкообразующую способность почти при 0 °C. Пленки отличаются механической прочностью, а также высокой свето- и атмосферостойкостью.

В качестве основы пленкообразующих дисперсий пригодны лишь некоторые из акриловых полимеров, имеющие соответствующую температуру стеклования, химическую структуру и молекулярную массу. Жесткость полимеров находится в прямо пропорциональной зависимости от молекулярной массы. Влияние химической структуры проявляется, например, в большей жесткости метакрилатов по сравнению с соответствующими акрилатами. Меньшая гибкость объясняется в основном наличием метильной группы.

$$-CH_2$$
  $-CH_2$   $-CH_3$   $-CH_2$   $-CH_2$   $-CH_3$   $-CH_2$   $-CH_3$   $-CH$ 

Ввиду того, что боковая алкильная группа разъединяет полимерные цепочки и выполняет функции внутреннего пластификатора, полимерные н-

алкилакрилаты и н-алкилметакрилаты становятся более мягкими с увеличением степени полимеризации (до некоторого предела). Слишком длинные алкилы предопределяют воскообразный характер полимера из-за склонности длинных цепей к кристаллизации. Свойства акриловых сополимеров являются промежуточными между свойствами исходных мономеров, что дает возможность широко варьировать показатели физических и химических свойств сополимера, оставляя неизменными специфические свойства полиакрилатов.

Широкое распространение получают самосшивающиеся акриловые дисперсии, образующие после термообработки прочные, стойкие к воде пленки с хорошими адгезионными свойствами, а также клеи «холодного» отверждения, сшивающиеся при температурах до 80 °C.

Дисперсионные клеи — многокомпонентные системы со структурирующими агентами, активаторами вулканизации, антивспенивателями, загустителями, антиоксидантами, инертными наполнителями, пигментами, пластификаторами и др. Основные рабочие характеристики клея определяет его полимерная основа.

В нашей стране в качестве основы клеев для флокирования текстиля применяли МБМ–3 (ТУ 6–01–186–79) и эмукрилы – продукты двух-, трех-, четырехкомпонентной сополимеризации акриловой и метиалакриловой кислот и их эфиров с метиалметакриамидом, стиролом и другими ненасыщенными соединениями. С помощью добавок регулируют вязкость, электропроводимость, цвет, тиксотропные свойства клеев, стабильность и водостойкость клеевых соединений.

В дисперсные клеи вводят добавки, улучшающие коалесценцию глобул полимера, например гликолевые эфиры. Эти добавки вызывают набухание или ограниченное растворение полимера на стадии пленкообразования, а затем полностью испаряются. Тем самым снижается температура пленкообразования.

В качестве *загустителей* водных клеев для электрофлокирования применяются вещества, получаемые переработкой природных продуктов — крахмала, целлюлозы, морских водорослей. Применяют эфиры крахмала и их соли, легко и быстро растворяющиеся даже в холодной воде, например натриевая соль карбоксиметилкрахмала, устойчивая к действию плесени. Из продуктов на основе КМК интерес представляет сольвитоза С-5 — натриевая соль полиглюкуроновой кислоты, образующая загустки уже при концентрации 5–6 %.

Часто в качестве загустителей используют различные производные целлюлозы: сложные эфиры, сульфаты, метилсульфонаты, простые эфиры целлюлозы КМЦ (карбометилцеллюлоза) и КЭЦ (карбоксиэтилцеллюлоза). КМЦ нерастворима в воде, но растворимы ее соли (натриевые, калиевые и аммонийные). Вязкость их водных растворов зависит от величины рН. Максимальная вязкость отмечается при рН 6–9, при дальнейшем увеличении рН вязкость падает. Наиболее распространена натриевая соль карбоксиметилцел-

люлозы. В загустители из производных целлюлозы в клеи вводят антисептики, например, пентахлорфенолят натрия [15].

Среди загустителей, получаемых из морских водорослей, наибольшее значение имеют альгинаты — растворимые в воде щелочные и магниевые соли альгиновой кислоты. Зарубежные аналоги отечественных альгинатов — манутексы (Англия), ламитексы (Норвегия), кельгины (США) и др. Альгинаты образуют высоковязкие растворы при низких концентрациях. Альгинаты натрия — гетерополярные высокомолекулярные электролиты, их водные растворы при рН 7 имеют наибольшую вязкость. Широкое распространение получили загустители полисахаридного типа, вырабатываемые из семян стручковых растений: гуаран, карубин, их простые эфиры, в основном гидроксиэтил- и карбоксиметиловые. Эти продукты прекрасно растворяются в воде, образуя очень вязкие растворы (благодаря боковым галактозным остаткам) даже при 1%-м содержании.

Недостаток применения природных загустителей в клеях для электрофлокирования — повышенная гигроскопичность пленки адгезива, благодаря которой ухудшается прочность закрепления ворса в мокром состоянии. В связи с этим создаются синтетические загустители. В настоящее время разработаны синтетические загустители на основе сополимеров малеиновой кислоты (СНСООН)<sub>2</sub>, малеинового ангидрида, карбоксиполиметилена и др. Синтетические загустители — это водорастворимые полимеры или водные дисперсии. Они могут находиться в жидком, пастообразном (как загустители на основе карбоксиполиметилена) или воскообразном состоянии [18].

В нашей стране синтез акриловых дисперсий и загустителей ведется в НИИ химии и технологии полимеров им. акад. В. А. Каргина (г. Саратов) и в ОАО «Оргстекло» (г. Дзержинск). В частности, там получены акриловый загуститель № 9, представляющий собой сополимер бутилакрилата, акриловой и метакриловой кислот, частично сшитый диметакрилатэтиленгликолем [19], загуститель ЭМА (на основе линейных и редкосшитых сополимеров этилена с малеиновым ангидридом), а также лакрис 3132-ВА и др.

Загустители на основе синтетических полиэлектролитов — это структурно-вязкие тиксотропные жидкости. Их вязкость зависит от концентрации электролита, температуры, молекулярной массы, напряжения сдвига, вида растворителя, степени диссоциации и замещения. Они представляют собой систему набухших частиц коллоидных размеров (0.5–10 мкм) — микрогелей или микростудней. В основе процесса загущения лежит, вероятно, так называемый тейнохимический (от греч. τειυ — растягивать) эффект, заключающийся в обратном превращении химической энергии в механическую в результате растяжения или сжатия гелей [20]. Увеличение вязкости при нейтрализации растворов синтетических загустителей объясняется конформационными превращениями макромолекул полимеров, заключающимися в разворачивании цепей в результате электростатического отталкивания при ионизации карбоксильных групп (рис. 1.1). В кислой среде происходит обратный про-

цесс. Наибольшая загущающая способность синтетических карбоксилсодержащих соединений отмечается при рН 6–10.

Рис. 1.1. Конформационные превращения макромолекул при изменении рН

Полимерные загустители при нейтрализации переходят в прозрачные вязкие растворы. Загущение может осуществляться до или после их введения в клеевую композицию. Перед добавлением в клеевую композицию загустители могут быть наполовину разбавлены водой для исключения локальных зон высокой вязкости. При необходимости высокого содержания сухого остатка загустители вводят медленно и при тщательном перемешивании, без предварительного разбавления. При изменении рН для приготовления клея нельзя пользоваться сильными кислотами и щелочами, поскольку это вызывает локальную коагуляцию. Обычно для этих целей применяют водные растворы аммиака или диоксид углерода.

Сагьоров (полимеры акриловой кислоты с молекулярной массой 450–4000 тыс.) и *Monsanto* EMA (сополимера этиленмалеинового ангидрида с молекулярной массой от 8 до 100 тыс.). Их недостаток — чувствительность к электролитам, снижающим вязкость. Загустители взаимодействуют с другими компонентами клеевой композиции с изменением вязкости.

Для увеличения прочности, устойчивости к истиранию и водостойкости флокированных материалов применяют термореактивные смолы, способные образовывать поперечные связи с полимером латекса, например, метилолмеламиновые, мочевино- и фенолоформальдегидные; производные акриламида: N-метилолакриламид (водный раствор), N-N'-метилендиакриламид (используется в виде порошка с 95%-м содержанием активных веществ) [21]. Луч-

шую водостойкость дает модификация водорастворимыми смолами. Катализаторами служат гидроортофосфат аммония, лимонная и щавелевая кислоты.

В патенте [22] предложен воздухопроницаемый адгезив для флокирования тканей из искусственных нитей на основе 57%-й водной дисперсии акрилового полимера. Было выяснено, что стойкость флокированных образцов к стирке и химчистке повышается с увеличением сухого остатка, количества загустителя и с уменьшением содержания пластификатора и катализатора. Пористость материала улучшается с уменьшением сухого остатка и содержания загустителя. Оптимальной была определена композиция следующего состава (в мас. ч.):

| акриловый латекс                                        |                |                    |      |  |
|---------------------------------------------------------|----------------|--------------------|------|--|
| загуститель (гидроксиэтилце                             | ллюлоза низкой | молекулярной       |      |  |
| массы                                                   |                |                    | 0.11 |  |
| стеарат аммония                                         |                |                    | 1.03 |  |
| диспергатор                                             |                |                    | 0.06 |  |
| вспениватель (жирный амино                              | опропионат)    |                    | 0.18 |  |
| термореактивная                                         | смола          | (глиоксальмочевин- | 1.18 |  |
| ная)                                                    |                |                    |      |  |
| термореактивная смола (меламиноформальдегидная)         |                |                    |      |  |
| катализатор (сульфониевая кислота)                      |                |                    |      |  |
| диоксид кремния                                         |                |                    |      |  |
| пластификатор (изодецилфта-                             |                |                    |      |  |
| лат)                                                    |                |                    |      |  |
| катализатор                                             | (щавелевая     | кисло-             | 0.3  |  |
| та)                                                     |                |                    |      |  |
| загуститель (гидроксиэтилцеллюлоза средней молекулярной |                |                    |      |  |
| массы)                                                  |                |                    |      |  |

рН системы доводили до 7.9 при помощи гидроокиси аммония. Флокирование производили сразу после нанесения клея, затем материал сушили 20 мин при температуре 120 °C и вулканизировали 5 мин при температуре 150 °C.

Для прочного закрепления ворса при флокировании текстильных материалов разработана клеевая композиция следующего состава [23] (мас. %):

В клеевую композицию [24] в качестве полимерной основы входит 50%-я эмульсия сополимера бутилакрилата, метилметакрилата и метакриловой кислоты в соотношении 50 : 43 : 2.

Водостойкий клей [25], содержащий в качестве модификатора эпоксидную диановую смолу и аминный отвердитель в количествах соответственно 2.5–20 и 0.25–2 на 100 мас. ч. латекса, может применяться при сплошном нанесении клея и создании узоров в зоне флокирования. Недостатком этой клеевой композиции является необходимость подогревания латекса перед введением эпоксидной смолы.

На кафедре ТНМКМ СПбГУПТД Е. Н. Бершевым, В. Б. Симиным, Н. И. Ива-новой, Л. В. Лобовой и Н. В. Демидовой разработана клеевая композиция, в которой в качестве сшивающего агента присутствует водорастворимая алифатическая эпоксидная смола [26]. Водорастворимость алифатических эпоксидных смол определяется тем, что их олигомерная цепь состоит из небольшого числа достаточно гидрофильных оксиэтиленовых групп.

Повышенные водостойкость клеевой пленки этой композиции и адгезия к ворсу обусловлены взаимодействием эпоксидных групп смолы с карбоксильными группами, содержащимися в полимерах акрилового загустителя и пленкообразователя. Кроме того, олигомерная цепь алифатических эпоксидных смол обладает более гибкой структурой по сравнению со структурой олигомерной цепи эпоксиднодиановых смол. Поэтому образующаяся за счет взаимодействия эпоксидных и карбоксильных групп пространственная сетка более эластична, что позволяет получить более мягкий клеевой слой. Взаимодействие карбоксилсодержащего полимера с эпоксидной смолой протекает с раскрытием оксиранового цикла с образованием сложноэфирной связи:

Процесс структурирования клеевых композиций на основе МБМ–3 и сшивающего агента ДЭГ–1 изучался методами измерения диаметра коллоидных частиц клеевой композиции и электронной спектрометрии [27]. Обнаружено, что введение сшивающего агента способствует увеличению среднего диаметра частиц, причем наиболее интенсивно (от 150 до 2100 нм) размер частиц увеличивается в течение 10 ч после приготовления, а затем замедляется, но длится не менее 100 ч (при нормальных условиях). Анализ электронных спектров поглощения показал, что при нормальных условиях в клеевых

композициях не происходит существенного изменения функциональных групп, т. е. процесс сшивания требует повышенной температуры.

Таким образом, в процессах приготовления клеевой композиции и нанесения её на текстильный материал происходит взаимодействие между сшивающим агентом и полимером латекса на уровне межмолекулярных и водородных связей. Образования ковалентных химических связей и трехмерной сетки не происходит при комнатной температуре, что говорит о достаточной стабильности исследованных клеевых композиций с точки зрения сшивки.

Разработана клеевая композиция следующего состава (мас. ч.):

| MБM-3                     | . 100                  |
|---------------------------|------------------------|
| AK-216                    | . 10                   |
| NH <sub>4</sub> OH (10 %) | До загущения (рН 9–10) |
| ДЭГ–1                     |                        |
| Антивспениватель          | 0.5–1                  |

Эта клеевая композиция, обеспечивающая достаточно высокую водостойкость флокированного материала, имеет недостаточный диапазон регулирования вязкости, ограниченную эластичность клеевой пленки, а также невысокую тиражность при печати, т. е. шаблон быстро забивается высыхающими частицами клея, и его необходимо часто промывать.

Для устранения указанных недостатков и для расширения области применения отделки материалов узорами из ворса методом электрофлокирования проведены исследования, включенные в гл. 3 и 6 данной работы. Исследования касаются совершенствования композиции, содержащей МБМ–3 и ДЭГ–1, а также разработки самосшивающейся композиции.

Для повышения стойкости к истиранию в сухом и мокром видах предложено в качестве акриловой составляющей использовать сополимер бутилакрилата, нитрилакрилата и метилолметакриламида в соотношении (86–90): (3–7): (3–11) [28].

ВНИИПИК в сотрудничестве с НИИ химии и технологии полимеров им. акад. В. А. Каргина и Ленинградским ПО искусственных кож «Пролетарский труд» разработал клей для производства одежной замши, имеющий следующий состав (мас. ч.) [29]:

| Акриловая эмульсия АК–230           | 100  |
|-------------------------------------|------|
| Загуститель АК-214-81               | 1.5  |
| 50%-й раствор азотнокислого аммония | 2    |
| 25%-й водный раствор аммиака        | 0.96 |

В настоящее время многими зарубежными фирмами выпускаются водные акриловые клеи специально для флокирования, в том числе для печати ворсом. В Японии клеи для флокирования производят 20 фирм. Известны клеи марок Тубвинил (фирма «Хемише фабрик Тюбинген», ФРГ), Кивофлок (фирма «Киссель—Вольф», ФРГ), Дикнал и Фонкоат (фирма «Дайниппон Инкорпорэйшн энд Хемикл», Япония). Эти клеи, как правило, двухкомпонент-

ные. Один из компонентов, в который входят полимерная основа, загуститель, катализатор и другие, представляет собой высоковязкую пасту молочнобелого цвета. Второй компонент — жидкий или пастообразный отвердитель — вводят перед использованием клея. При печати светлым или белым ворсом на темных и цветных основах в клеи добавляют пигментные концентраты. Клеи могут быть многокомпонентными, тогда в смесь полимерной основы с различными добавками последовательно вводят загуститель, отвердитель, катализатор, щелочной агент и др.

В *табл. 1.3* приведены основные технологические свойства некоторых зарубежных акриловых клеев, используемых для изготовления материалов с ворсопечатным рисунком.

Окрашивание клеевых пленок лучше всего проводить с помощью пигментов, имеющих наибольшую укрывистость. При этом важно, чтобы основные технологические свойства печатной композиции, а также свойства готового материала не ухудшались при добавлении пигментов.

Пигменты являются наполнителями в клее, поэтому важно выбрать оптимальную их концентрацию, чтобы пленки, получая высокую укрывистость, не ухудшали свои физико-механические и адгезионные свойства вследствие перераспределения внутренних напряжений в клеевой пленке. Важно добиться максимального диспергирования пигмента в клее, что придаст клеевому слою большую однородность и лучшие свойства. На вязкость и поверхностное натяжение клеев влияют форма и степень дисперсности частиц пигмента. Частицы крупных размеров вытянутой или пластинчатой формы стремятся распределиться параллельно поверхности клеевого слоя и создают большее сопротивление погружающейся ворсинке, чем мелкие частицы шарообразной формы. Важно учитывать природу пигмента для правильного его применения.

Например, некоторые минеральные пигменты недостаточно термоустойчивы. При 150 °C изменяется цвет охры, при 180 °C — пигмента желтого железокислого Ж. Органические пигменты имеют частицы меньших размеров, чем минеральные, и обладают в связи с этим большей укрывистостью и лучшими цветовыми характеристиками. Для изготовления глиммерных красок чаще всего используют специальные перламутровые пигменты.

Таблица 1.3. Свойства зарубежных акриловых клеев

| Марка            | Вязкость, Па·с                     | Сухой<br>оста-<br>ток, % | рН  | Макси-<br>мальное<br>время ме-<br>жду нане-<br>сением<br>клея<br>и флокиро-<br>ванием,<br>мин | Срок хране-<br>ния | Режим термообработ-<br>ки и отверждения | Применение, особенности                                               |
|------------------|------------------------------------|--------------------------|-----|-----------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------------------------------------|
| Дикнал<br>К 1870 | 0.2–0.5;<br>готового клея<br>37–50 | 45 ± 4                   | 5–6 | _                                                                                             | _                  | 8 мин при температуре<br>100–175 °C     | Текстильные материалы из химических волокон для мягких одежных тканей |
| Дикнал<br>К 1830 | 0.3-0.8;<br>готового клея<br>40-50 | 45 ± 1                   | 4–6 | _                                                                                             | -                  | -                                       | Для галантерейных материа-<br>лов и материалов верхней<br>одежды      |
| Дикнал<br>К 1500 | 0.3–1;<br>готового клея<br>40–60   | 45 ± 1                   | 4–6 | _                                                                                             | -                  | -                                       | Для обувных и мебельных материалов                                    |
| Фонкоат<br>R 137 | 1; готового<br>клея<br>37–50       | 45 ± 1                   | 4–6 | _                                                                                             | _                  | _                                       | Для мягких одежных материалов                                         |
| Фонкоат<br>R 235 | 0.2–1.5;<br>готового клея<br>40–50 | 45 ± 1                   | 4–6 | _                                                                                             | -                  | -                                       | Для галантерейных и материалов верхней одежды                         |
| Фонкоат<br>R 310 | 0.3–1.5;<br>готового клея<br>40–60 | 45 ± 1                   | 5–6 | _                                                                                             | -                  | -                                       | Для обувных и мебельных материалов                                    |

| Марка                       | Вязкость,<br>Па·с | Су-<br>хой<br>оста-<br>ток,<br>% | рН      | Максимальное время между нанесением клея и флокированием, мин | Срок хране-<br>ния                                    | Режим термообработ-<br>ки и отверждения                                          | Применение, особенности                                                                              |
|-----------------------------|-------------------|----------------------------------|---------|---------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Тубвинил<br>235 S           | 6.5–8             | _                                | 8.5–9.5 | 4–5                                                           | 6 мес; с до-<br>бавлением<br>отвердителя<br>– 24–72 ч | 8–12 мин при температуре 120 °C; без отвердителя 8–12 мин при температуре 150 °C | Для флокирования текстильных материалов                                                              |
| Тубвинил<br>235 SW          | 6.5–8             |                                  | 8.5–9.5 | 4–5                                                           | То же                                                 | То же                                                                            | Для белого флокирования окрашенных изделий                                                           |
| Тубвинил<br>647 D           | 8–10              | _                                | 4–5     | 4–5                                                           | » »                                                   | 4-12 дней при комнатной температуре, $15-20$ мин при температуре $80-100$ °C     | Для текстильных материалов из хлопка, вискозы, шерсти, по-лиамида, полиэфира, полиакрилонитрила      |
| Кивофлок<br>D 350           | _                 |                                  | _       | 8–10                                                          | 12–24 ч                                               | -                                                                                | Для трикотажа из полиакри-<br>лонитрила                                                              |
| Кивофлок<br>D 360,<br>D 370 | -                 | _                                | -       | 6–8                                                           | 12 ч                                                  | -                                                                                | Футболки, спортивная одеж-<br>да, рабочая одежда, исполь-<br>зуемая при повышенных тем-<br>пературах |
| Кивофлок<br>D 404           | -                 | _                                | -       | 10–12                                                         | 12–24 ч                                               | -                                                                                | Печать легких и тяжелых материалов, в том числе из синтетических волокон ротационными шаблонами      |

Удельный вес пигментов колеблется от 1.3 до 5.5 г/см<sup>3</sup>. Увеличение этой характеристики ухудшает кроющую способность краски и повышает возможность выпадения пигмента в осадок из суспензии [30], [31]. Слюда в чистом виде непригодна в качестве пигмента с перламутровым блеском, так как коэффициент ее преломления составляет примерно 1.6 и лишь незначительно отличается от коэффициента преломления большинства связующих для печатных красок, однако является идеальным носителем для поверхностей из оксидов металлов с высоким коэффициентом преломления света, дающих перламутровый блеск. Серебристо-белые пигменты (жемчужный цвет) состоят из слюды, покрытой тонким слоем диоксида титана. Если толщину окисного слоя на поверхности слюды увеличить (на 1 мкм), пигменты приобретают специфический цветовой блеск из-за интерференции световых волн. При точном соблюдении толщины слоя получают интерференционный пигмент определенного цвета. Добавляя в покрытие TiO2 оксид железа, получают пигменты с золотым блеском. Покрытие из одного оксида Fe<sup>3+</sup> дает возможность получения «бронзовых» и «медных» пигментов. Перламутровый эффект пигментов определяется размером частиц. Фракция менее 5 мкм обеспечивает серебристое покрытие с хорошей укрывистостью. Фракция 15-25 мкм придает яркий плотный тон и обладает средней укрывистостью. Пигменты с большим размером частиц – прозрачные, придают сверкающий эффект. Плотность пигментов на слюдяной основе – около 3 г/см<sup>3</sup>. Кроме слюдяных пигментов применяют алюминиевые пигменты, покрытые диоксидом кремния в присутствии предварительно диспергированных органических пигментов. В результате образуются полностью окрашенные частицы, в которых цветные пигменты вкраплены в кремниевый слой, расположенный вокруг Аlядра. При этом удается получить более насыщенные и чистые цвета при сохранении «флоп-эффекта» – «переливание» цвета в зависимости от угла зре-

При печатании пигментными красками через шаблоны необходимо учитывать, что размер ячейки (отверстия) шаблона должен быть в 1.5–2.5 раза больше, чем максимальный размер частиц пигмента. При печати плоскими шаблонами предпочтение следует отдать каландрированным моноволокнистым тканям. Все пигменты можно смешивать друг с другом, однако нужно учитывать, что цвет и блеск меняются в зависимости от соотношения пигментов различных типов. Перед введением пигментов в печатную композицию их необходимо диспергировать [32].

### 1.2.3. Характер реологических свойств воднодисперсионных клеев

Применяемые для печати ворсом клеи – коллоидные системы; с точки зрения реологии они представляют собой неньютоновские жидкости, вязкость которых зависит от условий течения

$$F = \eta DS, \tag{1.1}$$

где F — тангенциальная сила, вызывающая сдвиг слоев относительно друг друга ( $puc.\ 1.2$ );

- $\eta$  коэффициент динамической вязкости, или вязкость, зависящая от природы жидкости;
- D скорость сдвига (быстрота изменения ее от слоя к слою,  $D = (V_2 V_1) / (Z_2 Z_1)$ , puc. 1.2);
  - S площадь слоя, по которому происходит сдвиг;
- V(z) зависимость скорости слоя от его расстояния от неподвижной пластинки A;
  - $\Delta X$  величина первоначального сдвига жидкости.

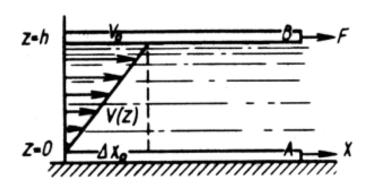



Рис. 1.2. Схема однородного сдвига (вязкого течения) слоя жидкости, заключённого между двумя твёрдыми пластинками A и B

Обозначив  $F/S = \tau$  ( $\tau$  — напряжение сдвига), видим, что зависимость  $D(\tau)$  также не линейна, что говорит о постепенном разрушении системы после достижения ею предела текучести.

Согласно классификации П. А. Ребиндера, загущенные дисперсионные клеи можно отнести к типу коллоидных систем с коагуляционной (тиксотропнообратимой) структурой [33]. При любой скорости течения в коагуляционных структурах протекают два противоположных процесса — разрушение и восстановление. Равновесное состояние между этими процессами характеризуется эффективной вязкостью  $\eta_{\ni}$ , уменьшающейся с ростом напряжения сдвига.

Сущность тиксотропии заключается в образовании связей (разрушенных в результате механического воздействия) из-за случайных соударений частиц, находящихся в броуновском движении. При этом восстановление структуры происходит не только в состоянии покоя системы, но и при ее течении со скоростью меньшей, чем та, которая вызвала данную степень разрушения. На puc. 1.3 представлены кривые течения и зависимость вязкости от напряжения сдвига для структурированных систем по  $\Pi$ . А. Ребиндеру.

Как показывает *рис.* 1.3, в области малых значений  $\tau$  и D кривая течения имеет прямолинейный участок, т. е. неньютоновская жидкость в этих условиях течет как ньютоновская, обладающая большой вязкостью  $\eta_{\ni}^0$ . Начальный прямолинейный участок на кривой течения может быть настолько малым, что его не удается обнаружить (например, у слабоконцентрированных растворов и дисперсий полимеров).

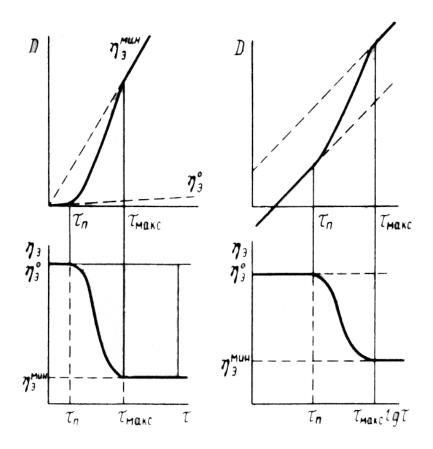



Рис. 1.3. Кривые течения и зависимости эффективной вязкости от напряжения сдвига для структурированных жидкостей (по П. А. Ребиндеру):

 $au_{\pi}$  — напряжение сдвига, соответствующее переходу ползучести в течение с измеримой вязкостью;  $au_{\text{макс}}$  — максимальный предел текучести;

 $\eta_{\ni}^0$  — вязкость жидкости с практически неразрушенной структурой;  $\eta_{\ni}^{\text{мин}}$  — вязкость, соответствующая полностью разрушенной структуре

— вязкость, соответствующая полностью разрушенной структуре (при условии ламинарного потока)

Таким образом, значение вязкости можно сравнивать только в том случае, когда они были получены для клеевых композиций, находившихся в одинаковых условиях. Кроме того, необходимо учитывать, что даже при измерениях на одном и том же приборе и при одних и тех же условиях вязкость

структурированной системы зависит от времени и воздействий на нее, т. е. от предыстории системы. Так, при достаточно длительном хранении коллоидной системы ее вязкость может повышаться вследствие структурирования.

Вязкость клеев целесообразно определять не для конкретного напряжения сдвига или скорости сдвига, а по кривым течения, т. е. зависимости  $D(\tau)$ , характеризующей их реологические свойства в достаточно большом интервале значений  $\tau$  и D. По кривой течения можно найти вязкость как отношение напряжения сдвига к скорости сдвига или как котангенс угла наклона касательной к кривой течения, проведенной в заданной точке.

При нанесении клея пользуются самыми различными способами. При флокировании изделий со сложной формой поверхности клей могут наносить кистью, валиком, распылением, тампоном, окунанием, иногда поливом или в электростатическом поле. Для каждого клеенаносящего устройства или приспособления реологические свойства клея оказывают существенное влияние на качество флокирования. Реологические и адгезионные свойства клея должны обеспечивать хороший контакт клея с основой и ворсом. Чем выше поверхностное натяжение клеевой композиции, тем труднее ворсинке деформироваться и внедряться в клеевой слой. Слишком малое поверхностное натяжение также нежелательно из-за получающейся нестабильности флокированной поверхности. Для нормального контакта нужно, чтобы клей хорошо смачивал поверхность волокон (поверхность контакта увеличивается с уменьшением угла смачивания).

Таким образом, для водных клеев предпочтителен гидрофильный ворс, на поверхности которого образуется тонкая водная пленка, способствующая быстрому отводу зарядов. Добавляя в клей смачивающие средства, можно улучшить его контакт с гидрофобным ворсом. Но слишком большое содержание смачивателя может снизить прочность закрепления ворса в клее в мокром состоянии. Лучшими свойствами с точки зрения контакта с водным клеем обладают волокна ворса, получившие обработку с «замедленной» гидрофильностью. Во время флокирования они ведут себя как гидрофобные, нечувствительные к влажности и температуре в рабочей зоне, а смачивание поверхности волокон клеем происходит через несколько секунд контакта [34].

# 1.2.4. Влияние состава клеев на основные свойства флокированных материалов. Пути разработки клеев для материалов с локально нанесенным ворсом

Для изготовления материалов с локально нанесенным ворсом необходим водостойкий клей, позволяющий получить электрофлокированный материал, который можно стирать наравне с другими текстильными изделиями. Использование меламино-, мочевино- или фенолоформальдегидных смол [23] в качестве сшивающего агента воднодисперсионных клеев не дает нужной

мягкости и водостойкости. Применение эпоксидиановых смол с отвердителями в качестве сшивающих агентов для полиакрилатов [25] требует повышения температуры латекса до 30–40 °C для равномерного распределения смолы в клее. При печатании смола оседает на шаблоне. Поэтому необходимо создание клеевой композиции на основе полностью водорастворимых компонентов, которая после сшивания давала бы мягкую, эластичную, устойчивую к воде пленку, имеющую высокую адгезию к ворсу.

Одним из направлений совершенствования физико-механических и эксплуатационных свойств текстильных материалов для одежды является использование клея во вспененном виде. Это перспективно из экономических и функциональных соображений. За счет пористой структуры клеевого слоя можно достичь более высокой воздухопроницаемости и комфортности при носке изделий из флокированных текстильных материалов. Кроме того, следует ожидать экономии энергии и повышения производительности за счет уменьшения количества испаряемой влаги при сушке, так как часть ее в клее заменяется воздухом. Пенная технология нашла широкое применение в отделке текстильных полотен и создании композиционных материалов с текстильными элементами. Важным требованием является при этом получение пен с определенными и постоянными свойствами [35]. В *табл. 1.4* приведена схема факторов влияния в системе нанесения вспененных составов.

Таблица 1.4. Факторы влияния в пенной системе [36]

| Рецептура       | Пена        | Текстильная      | Процесс нанесения пены |
|-----------------|-------------|------------------|------------------------|
| тецентура       | 110114      | основа           |                        |
| Состав.         | Скорость    | Волокнистый      | Сухой привес.          |
| Вспениваемость. | смачивания. | состав.          | Конструкция            |
| Сухой остаток.  | Плотность.  | Смачиваемость.   | наносителя.            |
| Скорость        | Вязкость.   | Степень чистоты, | Время контактирования  |
| смачивания.     | Дисперс-    | подготовка.      | пены и текстильного    |
| Вязкость        | ность       | Структура,       | полотна.               |
|                 |             | пористость.      | Параметры вспенивания. |
|                 |             | Влажность        | Температура            |

Известно, что для получения устойчивых пен жидкая фаза должна содержать по крайней мере два компонента, один из которых обладает поверхностно-активными свойствами и способен адсорбироваться на межфазной поверхности. В соответствии с адсорбционной теорией Гиббса [37] поверхностное натяжение о такой двухкомпонентной системы определяется количеством адсорбированного растворенного вещества:

$$d\sigma = -\sum \Gamma_i d\mu_i , \qquad (1.2)$$

где  $\Gamma_i$  – поверхностный избыток i-го компонента,

 $\mu_i$  – химический потенциал i-го компонента.

Адсорбция определяется по уравнению:

$$\Gamma = -\frac{C}{RT} \frac{d\sigma}{dC} , \qquad (1.3)$$

где C – объемная концентрация,

 $\frac{d\sigma}{dC}$  — поверхностная активность растворенного компонента,

R — универсальная газовая постоянная,

T – температура.

Поверхностная активность растворенного вещества определяется его способностью к понижению натяжения межфазной поверхности. На практике для повышения вспенивания и формоустойчивости пен в состав вспениваемых композиций вводят ПАВ. При механическом введении воздуха в водный раствор на граничных слоях воздушных пузырьков образуются адсорбционные слои ПАВ. При этом гидрофобная часть молекулы ПАВ повернута изнутри к воздуху, а гидрофильная – наружу, к воде (рис. 1.4).

Когда пузырек воздуха поднимается и проникает через границу раздела воздуха и воды, его окружает новый адсорбционный слой. Образуется пленка пены. Жидкость, заключенную между двумя адсорбционными слоями, называют междупленочной жидкостью.

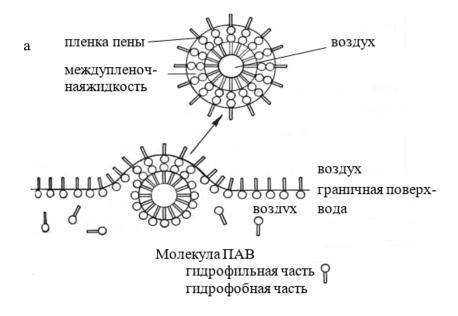



Рис. 1.4. Схема пенообразования в присутствии ПАВ [38]: a – пленка пены;  $\delta$  – пузырек воздуха на граничной поверхности

На основании исследований П. А. Ребиндера, Дж. Плато, Б. В. Дерягина [39] и других ученых была разработана теория устойчивости пен. По современным представлениям, устойчивость пены определяется, главным образом, гидродинамическим фактором и соответствующими свойствами системы, например, вязкостью жидкой фазы. С увеличением кратности пены (отношение объема пены к объему жидкости, пошедшей на ее образование) возрастает роль структурно-механического фактора в ее устойчивости. При кратности пены до 10-20 пузырьки ее имеют обычно сферическую форму (шаровые пены), так как они разделены достаточно толстыми прослойками жидкости. С ростом кратности от нескольких десятков до сотен структура пены переходит в ячеистую, или сотовую (полиэдрические пены). Тончайшие пленки между пузырьками воздуха образуют каркас, прочность которого зависит от свойств и концентрации пенообразователя (стабилизатора). Установлено, что стабильность пен увеличивается с ростом молекулярной массы стабилизирующего ПАВ, но происходит это до определенного предела. При дальнейшем увеличении молекулярной массы стабильность пен снижается. Максимум стабильности пен наблюдается и с увеличением концентрации низкомолекулярных истинно растворимых ПАВ. Пены, полученные с применением таких пенообразователей (их называют пенообразователями первого рода), быстро разрушаются по мере истечения междупленочной жидкости [40]. Коллоидные ПАВ относят к пенообразователям второго рода. С увеличением их концентрации стабильность пен непрерывно повышается. Каркас такой пены очень устойчив и может сдерживать истечение междупленочной жидкости.

На устойчивость пен оказывает положительное влияние вязкость междупленочной жидкости. Вязкость пленки пены  $\eta$  можно рассматривать как сумму вязкостей двух адсорбционных слоев  $\eta_{\text{адс}}$  и междупленочной жидкости  $\eta_{\text{м.ж}}$  [41]:

$$\eta = 2\eta_{\text{alc}} + \eta_{\text{m.x}} \tag{1.4}$$

В латексах вязкость междупленочной жидкости, которая представляет собой концентрированную дисперсию полимера, соизмерима с вязкостью адсорбционного слоя.

Пенообразующая способность ионогенных ПАВ существенно выше, чем неионогенных, что объясняется большей скоростью образования адсорбционных слоев из ионогенных ПАВ. Длительность существования пены зависит также от внешних воздействий (температуры, давления на пену).

Другим фактором стабильности пен является расклинивающее давление, которое проявляется в тонких пленках и препятствует их утонению под действием внешних сил. Б. В. Дерягин и Л. Д. Ландау объясняют этот эффект повышенной вязкостью и упругостью жидких оболочек коллоидных частиц ПАВ [42]. Они создают механический барьер, препятствующий сближению и слипанию частиц при утонении пленок за счет истечения жидкости.

Разрушение пен связывают с капиллярным давлением, обусловливающим переток жидкости в утолщенные участки, которые находятся под меньшим гидростатическим давлением (жидкость в утолщениях пленки имеет вогнутые мениски), а также диффузией газа из малого пузырька в более крупный через разделяющую их пленку. В пенах с толстыми прослойками сначала происходит истечение жидкости, приводящее к утонению пленок, а затем диффузия газа и разрыв пленок.

Все рассмотренные выше закономерности необходимо применить к водно-дисперсионным клеям, которые являются сложными многокомпонентными системами. В пенах из латексных клеев существует взаимосвязь между двумя типами межфазных поверхностей: полимер — серум и воздух — серум. Таким образом, режим вспенивания (скорость и время взбивания пены) необходимо выбирать не только с целью получить максимальную производительность, но и сохранять адсорбционное равновесие на границе полимер — серум. Длительное механическое воздействие может привести к флокуляции латексных глобул. Дополнительно вводимые в клеевую композицию ПАВ-вспениватели должны быть совместимы с ПАВ пленкообразующего латекса.

Следует при этом учитывать, что избыточное содержание ПАВ может снизить когезионные и адгезионные свойства клеевых пленок. Не всегда факторы, благоприятствующие устойчивости латексной пены, благоприятствуют развитию поверхности серум — воздух. Например, повышенная вязкость пенообразующей жидкости обеспечивает стабильность латексных пен, но затрудняет процесс образования новых пузырьков.

Вопрос устойчивости пен очень важен для производства электрофлокированных материалов, но в процессе их производства нет необходимости стремиться к повышению устойчивости жидкой пены в течение длительного периода. Главная задача заключается в обеспечении ее устойчивости на этапах получения, нанесения на текстильную основу, флокирования и сушки. Эти этапы непродолжительны (до 15–20 мин), но проблема достижения заданной устойчивости пен из латексных композиций достаточно сложна.

Важной проблемой при использовании клеев для печатания через шаблоны является обеспечение процесса печатания без забивания ячеек шаблона клеем. Введение дополнительных компонентов в основной латекс при приготовлении клеевой композиции может оказывать на него дестабилизирующее воздействие.

Дестабилизация может быть вызвана введением наполнителей в результате введения в дисперсионную среду многовалентных катионов, либо из-за перераспределения эмульгатора между полимером и наполнителем. Для латексов, стабилизированных эмульгаторами, способными к гидролизу, коагулирующим фактором является изменение рН. Ослабление стабилизирующего действия адсорбционного слоя из-за его дегидратации происходит при введении в латекс органических жидкостей, смешивающихся с водой. Водораство-

римые полимеры или полимеры, содержащие полярные гидратируемые группы, сорбируясь на поверхности латексных частиц, способствуют структурированию системы. Кроме того, в процессе получения клеевого отпечатка, связующее продавливают через сетку шаблона с помощью ракли, оно испытывает механические воздействия, в результате которых возможна десорбция эмульгатора с поверхности латексных частиц, что приводит к образованию коагулюма.

В течение рабочего цикла сетка шаблона с тонким слоем связующего находится под воздействием атмосферного воздуха, что вызывает испарение влаги с поверхности клея, уменьшение толщины гидратного слоя латексных частиц и, как результат, образования агрегатов, забивающих ячейки сетки.

Результатом дестабилизирующих воздействий на дисперсные системы, которые имеют место в процессе приготовления клеевых композиций и при клеепечатании, является снижение адсорбционной насыщенности поверхности дисперсных частиц. Следовательно, повышение устойчивости рассматриваемых систем возможно за счет повышения механической прочности защитного слоя эмульгатора, а также за счет увеличения толщины гидратной оболочки дисперсных частиц, создаваемой полярными частями молекул ПАВ. Последнее может быть достигнуто дополнительным введением в состав клеевых композиций ПАВ различной природы, а также гидрофильных низкомолекулярных веществ.

В выпускаемых в настоящее время акриловых и поливинилацетатных дисперсиях эмульгаторами являются поверхностно-активные вещества.

Различают четыре типа ПАВ: анионактивные, катионоактивные, амфолитные и неионогенные — в зависимости от характера диссоциации и стабилизирующего элемента, соответственно аниона, катиона, аниона или катиона (в зависимости от условий) и недиссоциирующей молекулы.

К анионактивным относятся мыла жирных кислот общей формулы RCOOMe, где Me — металл, а R — насыщенный углеводородный радикал неразветвленного строения; алкилсульфаты  $ROSO_3Me$ , представляющие собой полуэфиры, в которых один атом водорода серной кислоты этерифицирован спиртом, а второй нейтрализован сильным основанием; сульфонаты  $RSO_3Me$  — соли сульфоновых кислот.

Катионактивные эмульгаторы хорошо стабилизируют латексы в кислой среде и обеспечивают латексным глобулам положительный заряд. К ним относятся соли замещенных аминов:

$$\begin{bmatrix} H \\ I \\ I \\ I \end{bmatrix}^{+} X^{-} \begin{bmatrix} H \\ I \\ R - N - H \end{bmatrix}^{+} X^{-} \begin{bmatrix} H \\ I \\ R - N - R^{II} \end{bmatrix}^{+} X^{-} \begin{bmatrix} R^{III} \\ I \\ R - N - R^{II} \end{bmatrix}^{+} X^{-}$$
 первичные вторичные третичные четвертичные

Неионогенные эмульгаторы — чаще всего продукты конденсации оксида этилена с жирными кислотами, спиртами, алкилфенолами, аминами, содержащие гидрофобные алкильный или алкиларильный и полиэтиленгликолевый остатки:

$$R - X - CH_2CH_2OCH_2CH_2OCH_2CH_2O - ... - CH_2CH_2OH$$

где X = 0, S, COO,  $C_6H_4O$ , NH и т. п.

Наибольшую стабильность латексов на основе полиакрилатов обеспечивают анионные и неионогенные эмульгаторы. В отечественной промышленности обычно используют эмульгатор С-10, представляющий собой частично сульфатированный (15–20 %) оксиэтилированный нонилфенол (ОП–10). Его предполагаемое строение:

$$\begin{array}{c} C_9H_{19} \\ \\ NH_4O_3S \\ \\ O \ (CH_2CH_2O)_{10}H \end{array}$$

Схему закрепления стабилизатора C-10 на поверхности латексной частицы можно представить следующим образом (*puc. 1.5*).

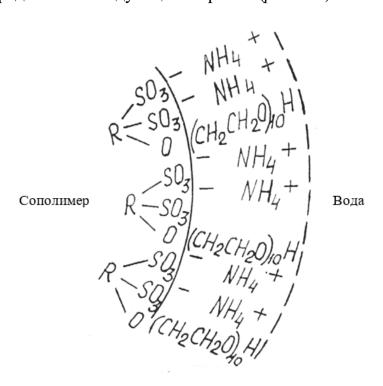



Рис. 1.5. Схема закрепления стабилизатора на поверхности латексных частиц

Использование в качестве стабилизатора ПАВ смешанного действия обеспечивает электростатическую и неэлектростатическую защиту частиц сополимера. Анионактивный эмульгатор, являясь сильным электролитом, диссоциирует в воде с образованием анионов и катионов. Длинноцепочные анионы (в рассматриваемом случае это ионы  $C_9H_{19}C_6H_4O(C_2H_4O)_{10}SO_3^-)$  образуют на поверхности частиц сополимера слой с отрицательным зарядом, который препятствует сближению частиц. Катионы  $(NH_4^+)$  находятся в водной фазе. Дифильная молекула неионогенного эмульгатора ориентируется на меж- фазной границе таким образом, что углеводородные части молекулы  $C_9H_{19}C_6H_4(C_2H_4O)_{10}H$  адсорбируются на поверхности полимерных частиц, создавая слой с хорошими структурно-механическими свойствами, а полярные группы (оксиэтиленовая цепь) обращены в воду и гидратированы.

Вследствие возникновения водородных связей между молекулами воды и эфирными кислородными атомами полиэтиленгликолевого остатка вокруг дисперсных частиц образуется достаточно мощный гидратный слой (стерическая стабилизация) [43]:

Таким образом, устойчивость акриловых латексов, стабилизированных эмульгатором C-10, определяется совместным действием нескольких факторов. Роль каждого из них может изменяться и зависит от конкретного состава.

Скорость коагуляции характеризуется изменением числа частиц дисперсной системы за единицу времени. Последнее можно обнаружить по увеличению мутности системы. На рис. 1.6 показана зависимость скорости коагуляции от концентрации коагулирующего электролита. Условно график можно разделить на три области. Область 1 характеризуется ничтожно малой скоростью коагуляции. В области 2 скорость коагуляции возрастает с повышением концентрации электролита (область медленной коагуляции). В области 3 скорость коагуляции практически не зависит от концентрации электролита (область быстрой коагуляции). Наименьшая концентрация электролита, при которой начинается коагуляция, называется порогом коагуляции. Величина порога коагуляции является важной характеристикой коллоидных свойств дисперсных систем. По ее изменению можно оценивать влияние различных факторов на устойчивость дисперсий, а также композиций на их основе.



Рис. 1.6. Влияние концентрации электролита  $C_{\text{эл}}$  на скорость коагуляции:  $C_{\text{м}}$  – порог медленной коагуляции;  $C_{\text{б}}$  – порог быстрой коагуляции

Различают два типа электролитной коагуляции коллоидных систем: нейтрализационную, происходящую в результате снижения поверхностного потенциала частиц, и концентрационную, протекающую вследствие сжатия диффузной части двойного электрического слоя. Первая характерна для систем, содержащих слабо заряженные частицы, вторая наблюдается в сильно заряженных дисперсиях. При электролитной коагуляции по концентрационному механизму порог коагуляции  $C_{\rm k}$  в соответствии с правилом Дерягина-Ландау (обоснование эмпирического правила Шульце-Гарди) обратно пропорционален заряду Z противоионов в шестой степени, т. е.

$$C_{\kappa} = \frac{\text{const}}{Z^6}.$$
 (1.5)

При нейтрализационной коагуляции показатель степени при Z уменьшается до двух (правило Эйлерса-Корфа).

# 1.3. Структура материалов с многоцветными флокированнными узорами (рисунками) из ворса

Наиболее простым вариантом материалов с локально нанесенным ворсом является одноцветное флокирование по основе с предварительно напечатанным клеевым рисунком. Ткань основы при этом может быть однотонной или набивной. Во втором случае общий многоцветный эффект сопровождается еще и объемностью рисунка. Особенно подходят в этом случае комбинации печати красками основного фона или элементов рисунка и рельефных ворсовых контуров (или «полоски», «горошка»). Дополнительный эффект дают блестки и флуоресцентные или вспенивающиеся красители, а также черный ворс. Для получения многоцветного рисунка с применением технологии флокирования используют и другие способы [44], [45].

При последовательной печати клеем и ворсом разных цветов первоначально наносят клеевой рисунок под ворсовый элемент одного цвета, затем флокируют ворсом первого цвета. Далее сушат, очищают и наносят клей второго цвета, а затем ворс второго цвета. Аналогичные операции выполняют для каждого цвета. Недостатком этого способа является невозможность воспроизведения тонких рисунков из-за усадки материалов при промежуточной сушке, а также из-за необходимости каждый раз совмещать элементы рисунка.

Флокирование белым ворсом по многоцветному набивному фону предусматривает печать способом «мокрое по мокрому» красками различных цветов, промежуточную сушку, нанесение непигментированного клея на весь рисунок, флокирование белым ворсом, затем сушку и чистку. Сквозь белый ворс и непигментированный клей просвечивает цветной печатный рисунок. Недостатком таких материалов является отсутствие ярких цветов, достоинством — высокая четкость печатного рисунка.

Можно осуществлять *печать красками по ворсу*. Клей наносят на весь рисунок, затем флокируют белым или светлым ворсом, материал сушат и чистят. Затем осуществляют печать красками «мокрое по мокрому». Можно применять и сопловую печать (распылением). Недостатком этого способа является промежуточная сушка, вызывающая усадку и вытягивание материала основы и, как следствие, невозможность точного совмещения цветов рисунка. Если делать сплошное флокирование, а затем печатать многоцветный рисунок, усадка не оказывет отрицательного влияния на качество рисунка.

Печать ворсом по ворсу предусматривает нанесение пигментированного клея на весь рисунок, флокирование, сушку, чистку. Затем наносят клей на определенные участки флокированной поверхности по новому, сочетающемуся с первым, рисунку. Повторяют флокирование, сушку и чистку. В таких материалах трудно добиться хорошего закреплении второго слоя ворса. Гриф флокированной поверхности ухудшается с утолщением второго слоя клея. Получаемый таким способом материал обладает повышенной рельефностью и может использоваться для декоративных целей.

При последовательной печати ворсом разных цветов покрывают клеем всю площадь рисунка, а затем через шаблоны наносят на определенные участки ворс разных цветов. Способ удобен тем, что не требуется промежуточная сушка и чистка. Получаемый рисунок отличается высокой четкостью. Этот способ используют при изготовлении штучных флокированных изделий.

Кроме перечисленных материалов с ворсом, нанесенным прямой печатью, существует технология печати ворсом методом термопереноса. В этом случае ворс наносится вначале на временную основу, а затем переносится на декорируемый материал (текстиль, кожу, пластмассу). Сравнивая прямую и

переносную печать ворсом, нельзя отдать предпочтение тому или другому способу. Выбор его зависит от вида флокированной отделки, свойств и назначения текстильного материала, возможностей предприятия. Текстильные материалы, отличающиеся подвижностью и объемной неустойчивостью (ворсовые, начёсные, рыхлые), невозможно флокировать прямым способом, но они могут быть сдублированы с ворсовым слоем методом термопереноса. Метод термопереноса возник как развитие способа отделки одежды рисунками из термопластичных (полиамидных, поливинилхлоридных) пленок — без ворса и флокированных — наносимых на материал сваркой. Следующим шагом стало нанесение флокированного слоя на слой термопласта, находящийся на временной основе, с последующим переносом ворса под давлением и при нагревании на текстильную основу. Перед наложением на текстильный материал промежуточную основу с антиадгезионным покрытием удаляют. В патенте [46] предлагается устройство для изготовления такого материала (рис. 1.7).

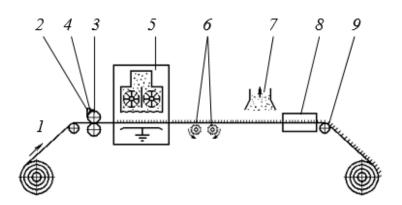



Рис.1.7. Схема устройства для изготовления термопереносного флокированного материала со съемной временной основой

Съемная основа *1* шириной 760–1520 мм с нанесенным на нее термопластичным слоем из смеси полиэфира и полиуретана проходит между
транспортирующими роликами *3*, к верхнему из которых примыкает ракля *2*.
В резервуаре *4*, образованном раклей и роликом, находится термореактивный
адгезив, наносимый на термопластичное покрытие слоем толщиной 0.2–0.8 мм.
Затем материал проходит флокатор *5*, где обрабатывается ворсом длиной 0.2–
0.8 мм. Зубчатые валики *6* создают вибрацию и улучшают ориентацию волокон в клеевом слое. Далее в устройстве *7* отсасывается не внедрившийся ворс,
и в камере *8* термореактивный клей стабилизируется при температуре 120–150
°C 1–3 мин. На ролике *9* с температурой 2–7 °C флокированный материал охпаждается. После удаления основы с антиадгезионным покрытием полученная термопластичная пленка с нанесенным ворсом используется для переноса
флокированных рисунков, например на спортивную одежду, при температуре

150–200 °C и давлении (20–50) 10<sup>3</sup> Па при выдержке 4–8 с. Перечисленные способы предусматривают сплошное одноцветное флокирование, а нужный рисунок вырезается или вырубается. Для соединения не связанных между собой деталей рисунка применяют вторую временную основу.

В США был разработан способ [47] термопереноса ворсовых рисунков на текстильный материал с помощью двух временных основ. Ворс 4 наносят по рисунку на временную основу, состоящую из прочной бумаги 1 с антиадгезионным (силиконовым или восковым) покрытием (рис. 1.8), на которую нанесена термопластичная пленка 2 (на основе виниловых полимеров) толщиной 0.2-0.4 мм. Для нанесения рисунка используют клей 3 на основе ПВХ. Затем удаляют избыток ворса, подсушивают клей до полуотверждения в ИКсушилке. После этого ворсовый рисунок покрывают второй временной основой (редкой сетчатой тканью 5). Получившийся многослойный материал переворачивают бумагой вверх и укладывают сеткой вниз на перфорированный вакуумный столик б сушильного устройства. При инфракрасном нагревании пакета пленка термопласта размягчается и под действием вакуума проникает в структуру сетки на участках, не занятых рисунком. Благодаря этому пленка не попадает на ткань на окончательном этапе термопереноса. Необходимо, чтобы температура была не выше температуры отверждения клея. После охлаждения бумага 1 легко удаляется. На участках, покрытых ворсом, термопластичная пленка остается над слоем клея. Она служит для переноса ворсового слоя на поверхность текстильного материала 7 (рис. 1.8, б). Перенос осуществляют под действием тепла и давления. После охлаждения пакета вторую временную основу удаляют. Недостаток рассмотренного способа необходимость использования двух временных основ.

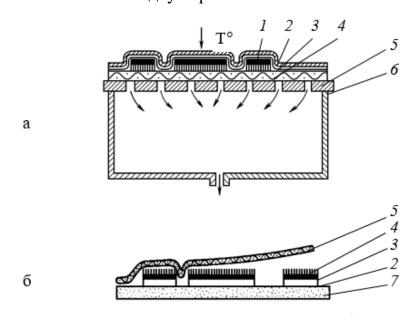



Рис. 1.8. Схема переноса ворса на вторую временную основу (a) и на текстильный материал  $(\delta)$ 

С начала 1980-х годов ведущие фирмы и лаборатории по электрофлокированию, в том числе в СПбГУПТД, проводят разработки материалов, полученных способом термопереносной печати ворсом [48]–[50].

Термопереносной флокированный материал состоит, как правило, из пяти слоев ( $puc.\ 1.9$ ): временной основы 1, временного клея 2, ворса 3, основного клея 4, служащего для закрепления ворса после термопереноса, и слоя термопласта 5 для приклеивания ворса к материалу изделия. В некоторых случаях слои 4 и 5 могут быть совмещены, например, термопластичный порошок вводят в клей 4.

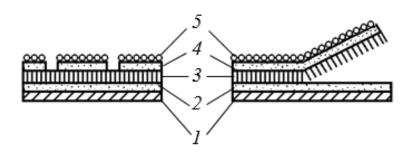



Рис. 1.9. Структура термопереносного флокированного материала

Таким образом, многоцветные флокированные рисунки можно получать из ворса разных цветов или из ворса одного цвета (белого или светлого) путем печатания красками. Иногда в практике флокирования необходимо относительно небольшое количество ворса какого-либо определенного цвета или нужно немного изменить цветовой тон ворса, имеющегося в большом количестве. Кроме того, представляет интерес создание полутоновых рисунков из ворса. Здесь с успехом можно использовать меланжи. Число комбинаций, которые можно создать из ворса двух или более цветов путем смешивания их в различных пропорциях, велико. Для определения цветового охвата смеси ворса заданных цветов или для того, чтобы выяснить, как изменить основной цвет с тем, чтобы приблизить его к нужному тону, полезно использовать существующие цветовые системы.

Большинство цветовых систем, которые начали разрабатывать с XVI века, привязывали цветовую гамму к основным геометрическим фигурам (*припожение А*). Наиболее популярными были круги (Ньютон, Гете, Хершел, Шрайбер, Клее), которые позднее стали сферами (Вундт, Манселл). Часто встречаются и треугольники, которые потом превратились в конусы и пирамиды. Однако со временем для отображения видимых цветов в теории все чаще стали использовать квадратные и кубические модели. Среди прочих моделей стоит обратить внимание на сферы Манселла и диаграммы международной комиссии по освещению МКО (*рис. 1.10*), которые являются теми стандартами, по которым сейчас измеряются цвета.

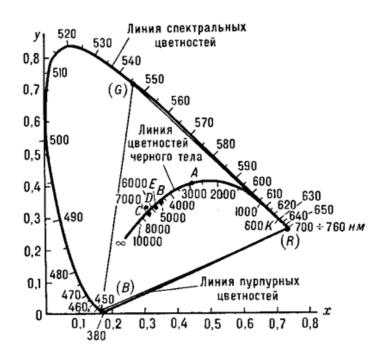
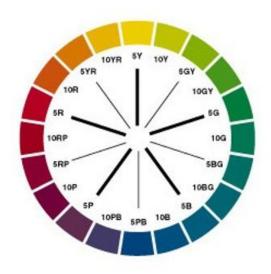
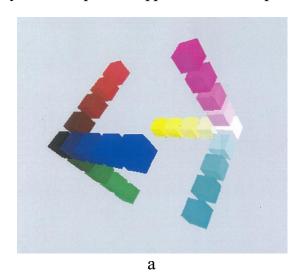



Рис. 1.10. График цветностей стандартной колориметрической системы XYZ и цветовой треугольник системы RGB (R- красный, G- зеленый, B- синий)

Система, предложенная в 1905 г. американским ученым Манселлом  $(A.\ H.\ Munsell)$ , определяет три характеристики цвета:  $H\ (hue\ -$  цветовой тон),  $C\ (chroma\ -$  цветность) и  $V\ (value\ -$  величина = яркость). Цветовой тон делится на пять основных цветов: красный (R), желтый (Y), зеленый (G), синий (B) и пурпурный (P). Кроме того, каждый цвет имеет 10 градаций. Величина определяется в 11 шагов от белого до черного, а цветность разбита на 15 степеней. Один цвет описывается формулой (тон / цветность / яркость). Например, у ярко-красного цвета будет формула  $5R\ 4/14\ (puc.\ 1.11)$ .





Рис. 1.11. Цветовая система Манселла


С развитием техники в теории цвета появляются новые модели. Популярный сейчас цветовой круг по сути мало чем отличается от того, что был предложен в 1660 г. И. Ньютоном. Художники, опираясь на этот круг, попрежнему считают основными цветами красный, желтый и синий вопреки тому факту, что такие технологии, как офсетная печать и фотография, которым уже более 100 лет, базируются на трехмерной системе цвета, где основными цветами являются циан (голубой), фуксин (пурпурный) и желтый. Цвета, видимые при расщеплении солнечного света с помощью призмы, часто сводят к трем цветам: красный, зеленый и сине-фиолетовый, которые являются основными цветами аддитивной системы цветов (свет). Если используются источники света (телевизоры, сканеры, мониторы компьютеров), доминирующей системой является RGB (от red - green - blue - красный - зеленый - синий), в которой комбинация красного, зеленого и синего создает белый цвет. Для цветов, которые получаются путем смешивания красок, пигментов или чернил на бумаге, ткани или другом материале, в качестве цветовой модели используется субстрактивная система СМҮ/СМҮК, где смесь циана (cyan), фуксина (magenta) и желтого (yellow) создает черный цвет (букве K соответствует black, так как для получения черного используют не равную смесь СМҮ, а просто черную краску).

Распространена также система HSL (от *hue - saturation - lightness* — цвет - насыщенность - светлота). У этой системы есть несколько вариантов, где вместо насыщенности используется хроматичность (*chromaticity*), светимость (*luminance*) и яркость (*value*).

Для описания и хранения любого цвета, который нельзя передать ни на бумаге, ни на мониторе, используют систему LAB Color.

В 1998 г. компания *Spittin'Image Software* запатентовала в США трехмерную модель, под названием COLORCUBE, с помощью которой можно изучать теорию цифрового цвета (*puc.* 1.12, a и  $\delta$ ).





## Рис. 1.12. Вид извне на оси RGB и CMY (*a*) и сама модель цифрового цвета COLORCUBE (б)

Эта модель позволяет легко переключаться между другими различными цветовыми моделями, включая цветовой круг, схему МКО (или СІЕ), схему HSV, сферу Манселла, систему *Pantone*, стандарт цветов DIN и карту цветов спектрального свечения. Чтобы переключиться из системы RGB в систему CMYK, достаточно всего лишь повернуть куб. Каждый цветовой элемент в COLORCUBE имеет свое местоположение внутри куба и цифровой идентификатор, указывающий на то, в какой пропорции были использованы исходные значения для воспроизведения данного цвета. Так образуется связь между информацией о положении и информацией о способе смешении цветов для данного элемента. Все взаимосвязи между цветами носят математический характер, и их можно смоделировать в координатах XYZ. Та же логика применяется к вычитанию цветов и к более сложным операциям (регулировка насыщенности, светлоты, контрастности).

Основой математического описания цвета в колориметрии является экспериментально установленный факт, что любой цвет представляется в виде суммы (смеси) определенных количеств трёх линейно независимых цветов, т.е. таких цветов, каждый их которых не может быть представлен в виде суммы каких-либо количеств двух других цветов. Три выбранных линейно независимых цвета называют основными цветами. Они определяют цветовую координатную систему. Когда цветовые координаты какого-либо цвета откладывают по трем взаимно перпендикулярным осям, этот цвет геометрически представляется точкой в трехмерном цветовом пространстве или вектором, начало которого совпадает с началом координат, а конец – с упомянутой точкой цвета. «Качество» цвета, не зависящее от абсолютной величины цветового вектора, называют его «цветностью» и геометрически оно может быть охарактеризовано также на «единичной» плоскости цветового пространства, проходящей через три единичные точки координатных осей. Линии пересечения единичной плоскости с координатными плоскостями образуют на ней равносторонний треугольник, в вершинах которого находятся единичные значения основных цветов. Этот треугольник часто называют треугольником Максвелла. Цветность какого-либо цвета определяется не тремя его цветовыми координатами, а соотношением между ними.

Другими словами, цветность определяется только направлением, а не абсолютной величиной цветового вектора, и ее можно характеризовать положением точки пересечения этого вектора (либо указанной прямой) с единичной плоскостью. Положение точки цветности определяется в нем двумя координатами, которых достаточно, так как по определению сумма ее трех координат равна 1. Точка цветности исходного (опорного) цвета, для которой три цветовые координаты равны между собой (каждая равна 1/3), находится в центре тяжести цветового треугольника.

Упомянутые выше цветовые модели и системы, а также разработки в области текстильной печати не могут быть полностью применимы в теоретических расчетах для создания полутоновых эффектов при флокировании ворсом, окрашенным в различные цвета. Причины заключаются в следующем. Во-первых, смешивание красителей осуществляется на молекулярном уровне, а при смешивании ворса мы имеем дело с отдельными частицами видимых размеров. Во-вторых, в отличие от текстильной печати при флокировании на равномерность окраски будут оказывать влияние электрофизические свойства ворса.

В *табл. 1.5* обобщены особенности многоцветных флокированных материалов, полученных с помощью локального нанесения ворса.

Таблица 1.5. Особенности способов получения многоцветных флокированных рисунков

| Способ получения<br>многоцветного ворсового<br>рисунка | Возможность пигментации клея | Только непигмен-<br>тированный клей | Точное разделение<br>цветов | Смешение цветов<br>по контурам | Промежуточная<br>сушка | Промежуточная<br>чистка | Полутоновой<br>рисунок |
|--------------------------------------------------------|------------------------------|-------------------------------------|-----------------------------|--------------------------------|------------------------|-------------------------|------------------------|
| Последовательная печать от-                            |                              |                                     |                             |                                |                        |                         |                        |
| дельных элементов рисунка кле-                         |                              |                                     |                             | _                              |                        |                         |                        |
| ем                                                     | •                            |                                     |                             | •                              | •                      | •                       |                        |
| и ворсом разных цветов                                 |                              |                                     |                             |                                |                        |                         |                        |
| Комбинированная печать крас-                           |                              |                                     | •                           |                                |                        |                         |                        |
| ками и ворсом                                          |                              |                                     |                             |                                |                        |                         |                        |
| Флокирование белым ворсом по                           |                              | •                                   | •                           |                                |                        |                         |                        |
| многоцветной печати красками                           |                              |                                     |                             |                                |                        |                         |                        |
| Печать красками по ворсу                               | •                            |                                     | •                           |                                | •                      | •                       | •                      |
| Печать ворсом по ворсу                                 | •                            |                                     |                             | •                              | •                      | •                       |                        |
| Последовательная печать от-                            |                              |                                     |                             |                                |                        |                         |                        |
| дельных элементов рисунка вор-                         |                              | •                                   | •                           |                                |                        |                         |                        |
| сом разных цветов                                      |                              |                                     |                             |                                |                        |                         |                        |
| Термопереносное флокирование                           | •                            |                                     | •                           |                                | •                      | •                       |                        |
| Меланжирование или полутоно-                           |                              | •                                   |                             |                                |                        |                         | •                      |
| вая печать ворсом разных цветов                        |                              |                                     |                             |                                |                        |                         |                        |

При флокировании текстильных материалов для нанесения клея можно в большинстве случаев использовать оборудование, предназначенное для печатания красками. Это позволяет фирмам, освоившим технологию шелкогра-

фической печати, расширить ассортимент продукции, не вкладывая значительные средства в оборудование.

В настоящее время способ печатания текстиля с помощью ротационных шаблонов стал доминирующим во всем мире. Путем чередования печатания отдельными шаблонами, установленными на печатной машине, можно воспроизводить одноцветные и многоцветные рисунки, размеры которых в продольном направлении превышают величину раппорта отдельных шаблонов. Современные управляющие системы позволяют также скорректировать процесс печатания при изменении длины печатаемого полотна [51]. Наносить адгезив с помощью ротационного шаблона можно и при сплошном флокировании, и этот способ используют так же, как и ракельное нанесение.

Ротационный печатный шаблон представляет собой перфорированный никелевый цилиндр со стенкой 80-100 мкм. Номер шаблона определяется размерами перфорации и обозначается числом меш — отверстий, приходящихся на 1 дюйм. Для текстильной печати красками используют шаблоны 60, 80 и 100 меш (для прецизионной печати — 120, 125 и 185 меш), для печати клеевого рисунка — шаблоны 20, 30, 40 и 60 меш.

Для печати штучных изделий используют плоские сетчатые шаблоны: сетчатую ткань натягивают на раму из алюминиевого профиля и приклеивают специальным клеем. Для выполнения этих операций, а также для нанесения трафаретного слоя на сетку используют специальное оборудование (механические или пневматические затяжные устройства, устройства для нанесения светочувствительного слоя и экспонирования). Для изготовления шаблонов используют ткани из синтетических волокон, преимущественно из полиэфирных мононитей. Они обладают высокой стойкостью к истиранию, эластичностью, их малая гигроскопичность важна при работе с водно-дисперсионными клеями, а гладкость ячеек шаблона обеспечивает хороший проток печатного состава. Параметры сеток, влияющие на качество отпечатка, - это номер сетки, толщина мононитей, величина поверхностного заполнения ткани. Для печатания клеевого рисунка при флокировании текстильных материалов используют сетки номеров 15-45 (от 15 до 45 нитей на 1 см) [45]. Толщина тканей колеблется в пределах 140-350 мкм, размер ячейки сетки – от 150 до 450 мкм.

Теоретическое количество наносимого на единицу площади поверхности (1  $\text{m}^2$ ) клея можно рассчитать, зная суммарный объем отверстий шаблона V, приходящийся на 1  $\text{m}^2$  его рабочей поверхности,  $\text{см}^3/\text{m}^2$  (maбл.~1.6,~1.7). Для ротационного никелевого шаблона

$$V = (1 L h \rho - M) / \rho 1 L, \qquad (1.6)$$

где l – длина окружности шаблона, см;

L – длина шаблона, см;

M – масса шаблона, г;

 $\rho$  – плотность никеля (8.9 г/см<sup>3</sup>).

Для сетчатых шаблонных тканей величину V можно рассчитать, зная номер ткани и диаметр мононити через поверхностное заполнение ткани [52].

Таблица 1.6. **Теоретический расход печатного состава при печатании** через ротационные шаблоны [45]

| Меш шаблона | Толщина стенок, мкм | Объем печатного состава, см <sup>3</sup> /м <sup>2</sup> |
|-------------|---------------------|----------------------------------------------------------|
| 40          | 100–115             | 45–50                                                    |
| 60          | 95–105              | 30–35                                                    |
| 80          | 85–90               | 17–20                                                    |
| 100         | 82–85               | 12–16                                                    |

Таблица 1.7. Теоретический расход печатного состава при печатании через плоские шаблоны с сетчатыми тканями фирмы Schweiz Seidengazefabrik AGThal

| Плотность ткани, нитей на 1 см | Объем печатного состава, см <sup>3</sup> /м <sup>2</sup> |
|--------------------------------|----------------------------------------------------------|
| 15 T                           | 168                                                      |
| 15 HD                          | 216                                                      |
| 20 T                           | 128                                                      |
| 23 T                           | 110                                                      |
| 24 T                           | 111                                                      |
| 24 HD                          | 108                                                      |

 $\Pi$ римечание. T — большой диаметр мононитей; HD — очень большой диаметр мононитей.

На количество наносимого печатного состава (клея) оказывают влияние также давление при печати, число проходов ракли, эластичность и гигроскопичность печатаемой основы, упругость профиля ракли и материала печатного стола. Расход клея при сплошном нанесении на текстильные основы составляет  $200-500~\text{г/m}^2$  (при плотности водных клеев  $1.05~\text{г/cm}^3$ ). При локальном флокировании расход клея будет зависеть от доли заполнения площади основы ворсовым рисунком.

Рассмотренные клеевые композиции для закрепления ворса разрабатывались для изготовления материалов со сплошным флокированием. Изготовление материалов с локальным нанесением ворса, как упоминалось выше, ставит задачу создания клеев, имеющих специальные свойства. Основными из этих свойств, в порядке значимости, являются:

1. Способность к нанесению через шаблон. Клей не должен забивать ячейки шаблона, не должен оседать в виде пленки на шаблоне и придавать ему 48

липкость. Клей должен легко смываться с шаблона и деталей узла клеенанесения.

- 2. Вязкость, обеспечивающая четкий отпечаток.
- 3. Высокая водостойкость клеевой пленки и адгезионного соединения с ворсом (для текстильных изделий).
- 4. Мягкость и эластичность клеевого слоя в изделии, мягкий гриф флокированной поверхности.
- 5. Отсутствие пузырей на клеевом слое при отделении шаблона от основы после печатания.

# 1.4. Оценка свойств текстильных материалов с флокированным рисунком

Основными характеристиками флокированной поверхности являются плотность нанесения ворса и прочность его закрепления [2], [6]. Исследования, посвященные оценке потребительских свойств и оптимизации структуры электрофлокированных материалов, относятся преимущественно к ковровым напольным покрытиям и искусственной замше обувного и галантерейного назначения [53]–[59]. Для них наиболее важными показателями являются износостойкость ворсового слоя, загрязняемость, очищаемость, упругость, а также специальные свойства, например, теплоизоляционные. Для одежных флокированных материалов (тканей, трикотажных полотен) наряду с износостойкостью большую значимость приобретают эстетические свойства, комфортность, стойкость к стиркам. На основании классификации тканей, предложенной в работе [60], составлена иерархическая схема потребительских свойств электрофлокированных материалов для одежды (рис. 1.13). На первый уровень выделены надежность, утилитарные и эстетические свойства. На нижнем, третьем, уровне представлены группы физико-механических показателей, позволяющих объективно оценить потребительские свойства. Для электрофлокированных материалов одежного ассортимента наиболее значимыми и наиболее проблемными показателями являются стойкость к истиранию в сухом и мокром видах, стойкость к стиркам, воздухопроницаемость и жесткость (мягкость). Эти показатели зависят от структуры флокированной поверхности: состояния клеевой пленки, степени проникания клея в материал основы, доли поверхности, занятой ворсом.

Для определения устойчивости к истиранию текстильных материалов создано большое число разнообразных приборов и методов, классификация которых достаточно полно изложена [61], [62]. Большое внимание уделяется оценке износостойкости ворсовых материалов: вельвета, бархата, махровых полотен [63], [64].

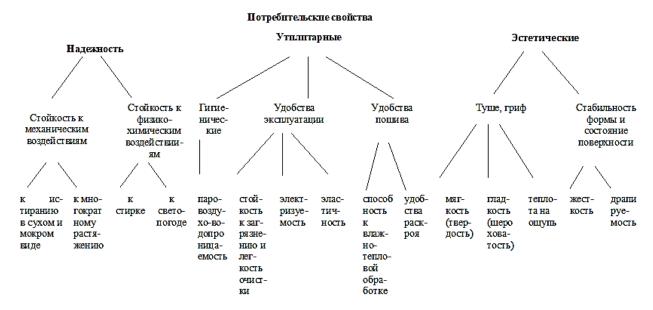



Рис 1.13. Классификация потребительских свойств электрофлокированных материалов для одежды

### 1.5. Анализ структуры и свойств теплоизоляционных материалов

В последние годы в индустриально развитых странах наблюдается тенденция роста доли текстильных материалов, вырабатываемых для технических целей. С освоением производства термостойких органических волокон и технологии их переработки эта доля возрастает еще больше, и текстильные материалы проникают в ранее не свойственные им области, заменяя традиционные материалы. Основными преимуществами текстиля в этом случае является сочетание лёгкости, прочности при растяжении и способности легко изгибаться.

Технология электрофлокирования, которая посредством варьирования трех основных элементов — основы, ворса и клея — позволяет получать материалы чрезвычайно широкого спектра свойств, в том числе соединять текстильные компоненты с нетекстильными, относится к числу наиболее перспективных с точки зрения создания материалов технического назначения с заданными свойствами. Особенно привлекательным здесь является возможность использования материалов с локально нанесенным ворсом, так как минимизированный по массе ворсовый слой с успехом может служить для создания воздушных прослоек в теплоизоляционном материале.

Внедрение технологий, связанных с использованием высоких температур и глубокого холода, а также повышение относительной стоимости энергоносителей требуют дальнейшего развития и повышения технического уровня теплоизоляционных работ. Большое число таких объектов, как тепловые агрегаты, теплоэлектростанции, газокомпрессорные станции, тепловые сети, высокотемпературные реакторы, нефтехимические установки, изотермические хранилища жидкого газа эксплуатируются в условиях атмосферных 50

воздействий, а также наличия агрессивных сред, вибрации и механических воздействий.

Эффективная теплоизоляция повышает стабильность и производительность технологических процессов, снижает массу и габариты конструкции, увеличивает срок их службы, улучшает условия труда. Тепловая изоляция промышленных объектов должна сочетать высокие физико-технические показатели (теплопроводность, плотность, прочность и др.) с конструктивностью и надежностью. Ни одно современное промышленное предприятие не может нормально функционировать без тепловой изоляции, так как ее применение позволяет существенно снизить энергозатраты. Применение 1 м<sup>3</sup> теплоизоляции экономит 1.4–1.6 тонн условного топлива в год. Между тем в России только на этапе подачи тепла потребителям теряется 60 млн тонн условного топлива в год (это 15 % всей отпускаемой потребителям энергии) [65]. Однако объем выпуска теплоизоляционных материалов в России примерно в 7 раз ниже, чем в Западной Европе и США. По оценкам специалистов, экономия энергоресурсов более рентабельна, чем увеличение объемов добычи топлива или строительства новых энергетических мощностей. Применение в строительстве теплоизоляционных материалов с малой плотностью дает возможность возводить здания и сооружения сборным способом, что сокращает сроки работ и общую стоимость строительства. Одновременно улучшаются теплотехнические показатели зданий, уменьшается звукопроницаемость.

Существенную роль выполняет теплоизоляция в транспортных средствах. Ею защищают металлические корпуса вагонов, самолетов, судов, фургоны и салоны автомобилей. Самые передовые технологии, в том числе в области тепловой изоляции, используются при сооружении космических аппаратов. Например, при создании орбитального комплекса «Буран» были разработаны пять типов теплозащитных материалов соответственно ступеням диапазонов температурной нагрузки. Для работы в диапазоне 790–1250 °C были разработаны теплозащитные материалы из штапелированного кварцевого волокна (ТЗМК) и связующего, при обжиге которого формировалась структура, на 90 % по объему состоящая из пустот. ТЗМК имеют плотность 0.15 и 0.25 г/см<sup>3</sup>, теплопроводность 0.05 и 0.06 Вт/м·К (при 20 °C). Для температур до 350–370 °C использована гибкая теплозащита из многослойного иглопробивного полотна на основе органических термостойких волокон [66].

Чрезвычайно важное значение имеет эффективность теплоизоляции для изготовления одежды, защищающей от пониженных температур (для строителей, дорожных рабочих, геологов, буровиков, спасателей) и от повышенных температур (рабочие горячих цехов, пожарные). Общеевропейский рынок защитной рабочей одежды прогнозировался в 4.8 млрд долларов в 2009 г. [67]. Это очень динамично развивающаяся область, часто соединяющая различные текстильные технологии. Рынок защитной одежды в США потребляет более 200

млн квадратных ярдов текстильных материалов (без медицинской одежды и рабочих рукавиц). При этом 65 % составляют нетканые материалы, 30 % — ткани и 5 % — трикотажные полотна. Только в Германии существует порядка 1 млн «холодных» рабочих мест. Это, например, рабочие места, связанные с изготовлением, складированием, транспортированием и продажей продуктов питания. «Холодным» считается рабочее место с регулярным нахождением работника при низких энергозатратах в закрытом помещении с температурой не более 15 °C.

Ведущими фирмами проводятся исследования по созданию новых материалов для одежды, защищающей от холода, в том числе для работы в полярных широтах, специальной одежды для горных видов спорта [68]. Все большее значение в защитной одежде приобретают такие ее характеристики, как комфортность в носке, легкость и современный дизайн [69].

Для разработки структуры изоляционного материала с применением технологии электрофлокирования были изучены основные требования, предъявляемые к теплоизоляторам, используемым в различных областях.

Тепловая изоляция, применяемая в строительстве, состоит в основном из основного (теплоизоляционного) и покровно-защитного слоев. Согласно ГОСТ 16381—77 теплоизоляционные материалы для изоляции оборудования, трубопроводов и строительных конструкций классифицируются по плотности (особо низкой ОНП; низкой НП; средней плотности СП и плотные ПЛ); жесткости (мягкие М; полужесткие П; жесткие Ж; повышенной жесткости ПЖ и твердые Т); теплопроводности (низкой А; средней Б; и повышенной В). Значения отдельных показателей указанной классификации приведены в *табл.* 1.8.

Таблица 1.8. Основная классификация теплоизоляционных материалов

| Характеристика                                            | Группы, классы | Значения    |
|-----------------------------------------------------------|----------------|-------------|
|                                                           | ОНП            | 15–75       |
| Плотность, кг/м <sup>3</sup>                              | НΠ             | 100–175     |
| TIJIOTHOCIS, RI/M                                         | СП             | 200–350     |
|                                                           | ПЛ             | 400–600     |
| Жесткость (величина относительного                        |                |             |
| сжатия (%)) при удельной нагрузке:                        |                |             |
| $-2 \text{ H/cm}^2$                                       | П              | 6–30        |
| $-40 \text{ H/cm}^2$                                      | Ж              | до 6        |
| $-100 \text{ H/cm}^2$                                     | ЖП             | до 10       |
|                                                           | T              | до 10       |
| Townson $\operatorname{Dr}/(x \circ C)$ way $t = 25$      | A              | до 0.06     |
| Теплопроводность, $BT/(M \cdot {}^{\circ}C)$ при $t = 25$ | Б              | 0.06-0.115  |
| C                                                         | В              | 0.115-0.175 |

Теплопроводность материалов чаще всего оценивают коэффициентом теплопроводности λ. Наименьшим коэффициентом теплопроводности харак-

теризуются газы и воздух в неподвижном состоянии (парах) –  $0.026 \text{ BT/(M} \cdot ^{\circ}\text{C})$ , наибольшим – железо и медь – соответственно 58 и 372 BT/(M·°C).

Теплопроводность материала зависит от природы материала, но также от влажности и температуры. Теплопроводность теплоизоляционного материала находится в прямой зависимости от температуры, при которой он эксплуатируется. Поскольку теплоизоляционный слой в условиях эксплуатации не имеет одинаковой температуры по всей толщине, принято его коэффициент теплопроводности определять по среднеарифметической температуре внутренней и наружной поверхностей. В технических характеристиках на теплоизоляционные материалы приводятся преимущественно значения коэффициента теплопроводности при температуре от 0 до 25 °C. Для расчета λ в реальных условиях эксплуатации материала пользуются формулой

$$\lambda = \lambda_0 + at_{cp} , \qquad (1.7)$$

где  $\lambda_0$  – коэффициент теплопроводности при 25 °C;

a — коэффициент, показывающий изменение коэффициента теплопроводности при повышении температуры на 1 °C;

 $t_{\rm cp}$  — средняя температура теплоизоляционного слоя.

Коэффициент теплопроводности материалов в конструкциях больше, чем до их укладки за счет применения в монтаже различного крепежа, а также за счет увеличения плотности материалов. Кроме плотности, жесткости и теплопроводности теплоизоляционые материалы различаются перечисленными ниже свойствами [70].

*Температуростойкость*: предельная положительная температура применения теплоизоляционного материала, при которой он сохраняет первоначальные свойств (структуру, прочность). Например, предельная температура применения технического войлока 100 °C, изделий из базальтового волокна 700 °C, пенопласта 150 °C.

*Теплостойкость* теплоизоляции важна, если она будет эксплуатироваться при систематических колебаниях температуры (подключение и отключение теплоносителя). Теплостойкость — это способность материала сохранять свою структуру при температурных колебаниях. Как правило, температурный показатель теплостойкости ниже их температуростойкости.

Mopoзостойкость — это теплостойкость материалов при отрицательной температуре. Она подразделяется по маркам от  $M_{P3}10$  до  $M_{P3}200$  (цифрами обозначается число циклов замораживания-оттаивания материала при насыщении водой, которое он выдерживает без разрушения). Этот показатель определяют у жестких материалов.

Влажность отрицательно влияет на качество теплоизоляции, так как вода, заполняющая ее поры, имеет теплопроводность  $0.6~\mathrm{Bt/(m\cdot ^{\circ}C)}$  – в 23 раза

больше, чем у воздуха. Использование увлажненных материалов для изоляции строительных конструкций и холодных поверхностей (холодильных установок, водяных магистралей), а также увлажнение в период эксплуатации не допускаются. Учитывая, что коэффициент теплопроводности льда равен 2.3 Вт/(м.°С), т. е. почти в 4 раза больше теплопроводности воды, последняя, находясь в теплоизоляционном материале, при замерзании еще резче снижает его теплоизоляционные свойства. Кроме того, при кристаллизации льда в изоляционном слое возникают повышенные напряжения, приводящие к возникновению трещин и даже разрушению всей смонтированной конструкции. Увлажнение материалов происходит путем водопоглощения при прямом контакте с влагой (например, при хранении) или за счет поглощения ее из окружающего воздуха. Водопоглощение за 24 часа составит, например, для пенопласта из полистирола – 4 %. Возможное поглощение влаги из воздуха для стекловолокна -5%, для пенополиуретана -20%, для технического войлока - 37 %. В технических условиях на материалы водопоглощение и гигроскопичность приводят с указанием срока воздействия влаги.

Tennoëмкость - свойство материала поглощать тепло при повышении температуры. Теплоемкость выражается в Дж/(кг·°С). Если при эксплуатации требуется быстрый нагрев или охлаждение изделия, то применяют изоляцию с невысокой теплоемкостью (изделия из минеральных или стеклянных волокон). Если происходят частые теплосмены и технология требует долгого сохранения тепла, учитывают тепло, аккумулируемое изоляцией, используя для нее наиболее теплоемкие материалы. Ниже приведены значения удельной теплоемкости в Дж/(кг·°С):

| 0.840 |
|-------|
| 0.750 |
| 2.510 |
| 0.480 |
| 4.187 |
| 1.500 |
| 1.880 |
|       |

Удельная теплоёмкость жидкостей значительно выше, чем твердых материалов и газов, поэтому увлажнение теплоизоляционных материалов резко увеличивает их теплоёмкость.

*Прочность*. В период эксплуатации теплоизоляция не несет больших механических нагрузок, однако, она должна обладать такой прочностью на изгиб и сжатие, при которой количество отходов в процессе монтажных работ и транспортирования минимально. Это требование касается формованных материалов — плит, полуцилиндров, цилиндров, сегментов. Прочность на изгиб  $\sigma_{\rm u}$ , МПа, определяют на образцах — балочках в форме прямоугольного параллелепипеда сечением  $50 \times 60 \times 25$  мм. К термоизоляционным материалам,

используемым в настилах, предъявляются требования на прочность при сжатии. Предел прочности при сжатии  $\sigma_{cж}$  устанавливают в процессе испытания образцов — кубиков с размерами ребер 100 мм. Предел прочности при растяжении (разрыве) указывается в технических условиях асбестовых шнуров, тканей, асбестового картона и других аналогичных материалов. Например, прочность при разрыве асбестокартона составляет  $1.2 \div 1.5$  МПа в продольном направлении и  $0.3 \div 1.0$  МПа — в поперечном направлении.

Cжимаемость — свойство материалов изменять объем под нагрузкой и восстанавливать его после снятия ее. Она характеризуется коэффициентом уплотнения материалов ( $K_y$ ), который учитывают в проектно-расчетных документах. Такие материалы, как минеральная вата, базальтовое, стекловолокно, пенопласт при монтаже уплотняют до необходимой конструктивной плотности. После монтажного уплотнения эти материалы приобретают такую упругость, при которой в процессе эксплуатации не будет происходить их заметная усадка. Поскольку при уплотнении снижаются теплоизоляционные показатели, уплотняющиеся материалы рекомендуется предохранять от механических нагрузок при хранении.

Акустические свойства — это способность поглощать звуковые волны (звукопоглощение) и ослаблять проникновение звука через ограждение (звукоизоляция). Акустические свойства присущи многим теплоизоляционным материалам. Очень часто требования по тепло- и звукоизоляции совмещены.

Огнестойкость — способность материала выдерживать воздействие высоких температур без воспламенения, нарушения структуры, прочности и других его свойств. По степени возгораемости теплоизоляционные материалы подразделяют на горючие и негорючие.

Теплоизоляционные материалы выпускают в виде матов, плит, скорлуп, а также в виде более технологичных конструкций, состоящих из скрепленных теплоизоляционного и покровного слоев. В *приложении Б* приведены технические характеристики основных теплоизоляционных материалов [70].

Для изготовления одежды, защищающей от тепла и холода, применяют разнообразные многослойные пакеты, в том числе содержащие металлизированную пленку или фольгу [71]—[74]. Ещё недавно российскими стандартами для костюмов, предназначенных для защиты от низких температур, было предусмотрено использование полушерстяного ватина в три слоя, а также хлопчатобумажных тканей верха и подкладки. В настоящее время в утепляющей прокладке такой одежды могут быть использованы любые ткани, нетканые материалы, вата, перопуховые смеси, натуральный и искусственный мех и другие материалы, которые обеспечивают требуемые теплозащитные свойства. Нормируемыми показателями являются [75]:

Поверхностная плотность утепляющих прокладок для зимней спецодежды составляет в среднем  $325-450 \text{ г/m}^2$ . Сочетание традиционных утепляющих слоев с утепляющими прокладками из оленьей шерсти ( $240-360 \text{ г/m}^2$ ) или клееным нетканым материалом из смеси шерсти с регенерированными химическими волокнами из бытовой одежды, использование ветростойкой прокладки может довести тепловое сопротивление до значения  $0.400-0.590 \text{ m}^2 \cdot ^{\circ}\text{C/Bt}$ , что позволит работать на открытом воздухе не менее четырех часов. Испытания комплекта одежды для защиты от пониженных температур проводятся по методу A1 с учётом физиологического состояния человека [76].

В *табл. 1.9* приведена классификация одежды для защиты от пониженных температур в соответствии с немецким стандартом.

Таблица 1.9. **Классификация одежды для защиты от пониженных** температур по воздухопроницаемости и паронепроницаемости

| Характеристика                              | Классификация                                         | Класс |  |  |  |
|---------------------------------------------|-------------------------------------------------------|-------|--|--|--|
| Воздухопроницемость, В, л/м <sup>2</sup> ·с |                                                       |       |  |  |  |
| B ≤ 20                                      | Низкая                                                | 3     |  |  |  |
| $20 < B \le 150$                            | Умеренная                                             | 2     |  |  |  |
| B > 150                                     | Высокая                                               | 1     |  |  |  |
| Паропроницаемо                              | Паропроницаемость, $\Pi$ , $\Pi a \cdot m^2 / B \tau$ |       |  |  |  |
| $\Pi > 20$                                  | Высокая                                               | 4     |  |  |  |
| $13 < \Pi \le 20$                           | Умеренная                                             | 3     |  |  |  |
| $6 < \Pi \le 13$                            | Низкая                                                | 2     |  |  |  |
| 6 ≤ Π                                       | Очень низкая                                          | 1     |  |  |  |

Физиологические свойства, обеспечивающие комфорт при носке защитной одежды, определяются процессами термо- и массопереноса, происходящих отдельно и совместно. Обязательно нужно учитывать, в каких условиях эксплуатируется одежда. Например, высокая скорость движения воздуха увеличивает теплопотери. Среди требований, предъявляемых к теплоизолирующим материалам для защитной одежды ASTM (American Sosiety for Testing Material) в США и CGSB (Canadian General Standards Board) в Канаде — комфортность, легкость ухода, срок службы [77]. В табл. 1.10 приведены требования к различным компонентам материалов пакетов защитной одежды (жилет, костюм, куртка, брюки) от пониженной температуры в соответствии с немецкими нормами.

Паронепроницаемость (паропропускание, паросопротивление) — это парциальное давление водяных паров между двумя поверхностями материала (пакета материалов), включает диффузионный и конвективный компоненты. Тепловое сопротивление определяется температурным градиентом, возникающим при прохождении потока тепла через материал (пакет материалов)

при различных температурах двух поверхностей этого материала. Передача тепла осуществляется тремя путями: кондукцией, конвекцией, излучением.

Таблица 1.10. **Нормируемые технические требования для одежды,** защищающей от пониженных температур

| Вид защитной одежды      | Технические требования | Материал | Под-   | Весь  |
|--------------------------|------------------------|----------|--------|-------|
| Вид защитной одежды      | технические треоования | верха    | кладка | пакет |
|                          | Прочность при разрыве  | +        | _      | _     |
|                          | Прочность при раздире  | +        | _      | _     |
| Dog Burth Growth Hig     | Намокаемость           | +        | +      | _     |
| Все виды одежды для      | Стойкость к истиранию  |          |        |       |
| защиты от холода         | в мокром состоянии     | +        | +      | _     |
|                          | Тепловое сопротивление | _        | _      | +     |
|                          | Паронепроницаемость    | _        | _      | +     |
| Дополнительно те же      | Цвет                   | +        | _      | _     |
| виды одежды для спе-     | Цветостойкость         | +        | _      | _     |
| циальных работ с 1 но-   | Водостойкость (измене- |          |        |       |
| ября по 31 марта на воз- | ние цвета)             | +        | _      | _     |
| духе                     |                        |          |        |       |

При изготовлении термозащитной одежды используют текстильные материалы из термо- и огнестойких волокон: параарамидных (Kevlar, Technora, Nomex); на основе меламиновой смолы (Bazofil, Kynol); на основе парафениленбензодиоксазола (полибензол, содержащий гетероциклическое кольцо) — Zylon; силиконовых — из SiO<sub>2</sub> [78]. Эти волокна имеют кислородный индекс не менее 28. При сравнительной оценке учитывают такие показатели этих волокон, как скорость высвобждения тепла, индекс темпа роста огня, объем выхода дыма. При учёте последнего показателя следует отдать предпочтение волокнам Kynol и Zylon, так как они почти не образуют дыма. Это очень важно для безопасного использования, так как задымление вызывает панику и отравления, что приводит к большему количеству несчастных случаев, чем непосредственно огонь. Силиконовые волокна выдерживают температуру до 1000 °C.

Испытания одежды, предназначенной для защиты от огня, проводятся в нашей стране по стандарту [79], аналогичному международному стандарту DIN EN ISO 15025 [80]. Основными защитными функциями одежды для пожарных являются: низкая теплопроводность (при действии огня и излучении), высокое тепловое сопротивление, прочность, износостойкость, устойчивость к проникновению воды и жидкостей.

Приведенный обзор показывает, что при разработке технологий локального флокирования на различных материалах-основах и различного назначения должен быть решен комплекс задач, которые касаются исследований сырьевых компонентов, технологических параметров, геометрических и цветовых характеристик флокированного рисунка, а также разработки специального оборудования. Некоторые варианты технологии электрофлокирования, такие как термоперенос ворса, целесообразно применять именно при локальном нанесении ворса, когда ворс покрывает лишь часть всей поверхности материала. Решению указанных задач посвящены следующие главы.

## Глава 2. ОБОРУДОВАНИЕ ДЛЯ ЭЛЕКТРОФЛОКИРОВАНИЯ, МЕТОДИКИ И ПРИБОРЫ ДЛЯ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВА-НИЙ СВОЙСТВ ИСХОДНЫХ МАТЕРИАЛОВ И МАТЕРИАЛОВ С ЛО-КАЛЬНО НАНЕСЕННЫМ ВОРСОМ

### 2.1. Исследуемые материалы и их характеристика

### 2.1.1. Ингредиенты клеевых композиций для печати ворсом

### Плёнкообразователи и загустители

В качестве основных компонентов клеевых композиций использованы акриловые водные дисперсии, полученные эмульсионной полимеризацией. Все они представляют собой молочно-белые жидкости, имеющие плотность 1,050-1,055 г/см<sup>3</sup>.

Физико-коллоидные свойства и мономерный состав этих продуктов приведены в maбл.~2.1 и 2.2. Плёнкообразующие дисперсии дают свободные плёнки, имеющие прочность при разрыве не менее 1 Мпа и относительное разрывное удлинение не менее 1000% [43].

Таблица 2.1. Физико-коллоидные свойства акриловых дисперсий

| Наименование,   | Сухой    | Остаточный     | Средний | Поверхно-   | pН      |
|-----------------|----------|----------------|---------|-------------|---------|
| номер ТУ        | остаток, | мономер,       | диаметр | стное на-   |         |
|                 | % мас.   | % мас.         | частиц, | тяжение,    |         |
|                 |          |                | HM      | мН/м        |         |
|                 |          | Плёнкообразова | атели   |             |         |
| МБМ-3           | 36–42    | 0,3            | 170     | 35–41       | 5,0-7,0 |
| ТУ 6-01-186-89  |          |                |         |             |         |
| AK-211          | 47,8     | 0,01           | 73      | 36,8        | 2,57    |
| ТУ 6-01-1259-81 |          |                |         |             |         |
| Акрэмос 702     | 48–52    | -              | _       | Не более 40 | 5,0-7,0 |
| ТУ 6-02-        |          |                |         |             |         |
| 05757593-176-93 |          |                |         |             |         |
| Эмукрил М       | 40,4     | 0,01           | _       | _           | 7,0-8,5 |
| ТУ 6-36-        |          |                |         |             |         |
| 5800146-264-91  |          |                |         |             |         |
|                 |          | Загустител     | И       |             |         |
| Акрэмос 402 ТУ  | 18,0     | -              | 85      | 42,8        | Не бо-  |
| 2241-005-       |          |                |         |             | лее 5,0 |
| 55856863-2001   |          |                |         |             |         |
| AK-216          | 19,7     | _              |         | 38,4        | 5,0     |

Таблица 2.2. Мономерный состав акриловых дисперсий

| Наимено-  |      | Содержание мономера в полимере, % мас. |      |     |        |         |      |      |     |
|-----------|------|----------------------------------------|------|-----|--------|---------|------|------|-----|
| вание     | MA   | ЭА                                     | БА   | MAK | Метил- | 2-этил- | MMAA | Мо-  | ЭГА |
| дисперсии |      |                                        |      |     | метак- | гекси-  |      | че-  |     |
|           |      |                                        |      |     | рилат  | лакри-  |      | вина |     |
|           |      |                                        |      |     |        | лат     |      |      |     |
| МБМ-3     | 62   | -                                      | 35   | 3   | -      | -       | -    | -    | -   |
| AK-211    | -    | -                                      | 58   | 7   | 35     | _       | -    | -    | -   |
| Эмукрил   |      |                                        |      |     |        |         |      |      |     |
| M         | -    | 60                                     | -    | -   | 30     | -       | 1,5  | -    | -   |
| Акрэмос   |      |                                        |      |     |        |         |      |      |     |
| 702       | 29,3 | -                                      | 15,3 | -   | -      | 3,3     | 1,4  | 1,3  | -   |
| AK-216    | -    | -                                      | 50   | 50  | -      | -       | -    | -    | _   |
| Акрэмос   |      |                                        |      |     |        |         |      |      |     |
| 402       | -    | -                                      | 40   | 60  | -      | -       | -    | -    | 0,5 |

В исследованиях использованы также опытные образцы акриловых дисперсий, разработанные применительно к задаче флокпечати на текстильных основах, которые получали полунепрерывной эмульсионной полимеризацией в присутствии смешанного эмульгатора (сульфатированного оксиэтилированного алкилфенола) С–10, ··· С–12 или смеси анионактивных Е–30 и неионогенных эмульгаторов типа «Волгонат» (для Вонкоут 3218). Основными мономерами для их производства являлись эфиры акриловой и метакриловой кислот: метилакрилат (МА), этилакрилат (ЭА), бутилакрилат (БА), 2-этилгексилакрилат (2-ЭГА), акриловая кислота (АК), метакриловая кислота (МАК), нитрил акриловой кислоты (НАК).

С целью повысить водостойкость плёнок при синтезе использованы:

- сшивающие и модифицирующие мономеры из класса аллильных производных: диаллилизофталат – ДАИФ, триаллилизоцианурат – ТАИЦ;
- бифункциональные ненасыщенные олигомеры: бутандиолдиакрилат БДДА, монометакриловый эфир этиленгликоля МЭГ, диметакрилат этиленгликоля ДМЭГ;
- эфиры метакриловой кислоты с различными функциональными группами: глицидил-, изоборнилметакрилаты ГМА и ИБМА, метилолметакриламид ММАА, амид метакриловой кислоты АМК;
  - оксисиланы и комплексная соль цинка.

Мономерный состав и коллоидно-химические показатели исследованных дисперсий представлены в *табл. 2.3*.

Таблица 2.3. Состав и коллоидные свойства опытных образцов акриловых дисперсий

| Рабочее название или торговая марка, мономерный состав (мас. ч.) | Сухой<br>оста-<br>ток, % | Размер<br>частиц,<br>нм | рН      | Поверх-<br>ностное<br>натяже-<br>ние, мН/м |
|------------------------------------------------------------------|--------------------------|-------------------------|---------|--------------------------------------------|
| Пленкообра                                                       | азователи                |                         | T       |                                            |
| 1 «В» с добавлением соли цинка                                   | 39.6                     | 264                     | 9.9     | 37.3                                       |
| 2 «В» с добавлением ММАА                                         | 40.5                     | 172                     | 4.6     | 38.0                                       |
| 3 «B»                                                            | 39.1                     | 196                     | 3.7     | 38.6                                       |
| 4 «B»                                                            | 39.3                     | 165                     | 3.7     | 38.6                                       |
| 5 «B»                                                            | 38.8                     | 270                     | 3.8     | 38.6                                       |
| 6 «B»                                                            | 39.2                     | 196                     | 5.8     | 37.3                                       |
| 7 «B»                                                            | 40.2                     | 215                     | 4.3     | 38.7                                       |
| ЭМК–3, оп. 9 80ЭА+20ММА+3МАК+1ГМА                                | 38.6                     | 70                      | 2.8     | 35.5                                       |
| ЭМК-3 80ЭА+20БМА+3МАК                                            | 38.2                     | _                       | 2.9     | 35.6                                       |
| ЭБК-3 60ЭА+20БМА+3МАК                                            | 40.0                     | _                       | 3.5     | 38.0                                       |
| МБМ–3 (ТУ 6–01–186–89)<br>62MA+35БА+3MAК или<br>67MA+30БА+3MAK   | 39÷40                    | 170                     | 6.4÷7.0 | 37.5                                       |
| Вонкоут 3218 72БА+22ЭА+1МАК+3НАК+<br>+2МАА                       | 50.0                     | _                       | 7.3     | _                                          |
| T-16a 78БА+4.5MAK+14CT+3.5MMAA                                   | 42.4                     | 215                     | 3.2     | 38.0                                       |
| 8 «В» МБМ–3, модифицированная ИБМА с постадийной дозировкой АМК  | 41.6                     | 325                     | 2.7     | _                                          |
| 9 «В» МБМ–3 с уменьшенным в 2 раза содержанием эмульгатора       | 40.2                     | 657                     | 4.0     | _                                          |
| 10 «В» 67MA+30БА+3MAК+<br><sub>+</sub> 7.5AMК (2 стадия)         | 41.5                     | 178                     | 4.1     | _                                          |
| 11 «В» 67МА+30БА+3МАК+11.8ИБМА (2 стадия)                        | 42.0                     | 117                     | 3.1     | _                                          |
| 12 «В» 67MA+30БА+3MAК+1ГМА                                       | 39.9                     | 184                     | 3.3     | 38.2                                       |
| 13 «В» 67МА+30БА+3МАК+2ИБМА (2 стадия)                           | 39.9                     | 172                     | 3.3     | _                                          |
| 14 «В» А+МА+2ЭГА+МЭГ+ИБМА+ММАА                                   | 40.5                     | 172                     | 3.0     | 38.0                                       |
| 15«B» ЭА+МАК+НАК                                                 | 41.8                     | 81                      | 2.3     | 32.6                                       |
| AK-211 586A+35MMA+7MAK                                           | 47.8                     | 73                      | 2.6     | 36.8                                       |
| Акрэмос 701 МА+БА+МАК+сшивающая добавка (ТУ 6–02–5757599–150–90) | 39±3                     | _                       | 6±1     | 40                                         |

| Рабочее название или торговая марка, мономерный состав (мас. ч.)                  | Сухой<br>оста-<br>ток, % | Размер<br>частиц,<br>нм | рН  | Поверх-<br>ностное<br>натяже-<br>ние, мН/м |
|-----------------------------------------------------------------------------------|--------------------------|-------------------------|-----|--------------------------------------------|
| Загуст                                                                            | ители                    |                         |     |                                            |
| 1 «Д» МАК+АМК                                                                     | 21                       | 172                     | 3.7 | 38.6                                       |
| 2 «Д» АК+силан                                                                    | 14.6                     | 184                     | 3.1 | 37.3                                       |
| 3 «Д» МАК+ГМА 2-х стад.                                                           | 15.8                     | 602                     | 3.5 | 45.5                                       |
| 4 «Д» АК+ГМА                                                                      | 18.9                     | 141                     | 5.6 | 38.0                                       |
| 1-Б с введением БДДА                                                              | 18.8                     | 141                     | 2.0 | 45.5                                       |
| 2-М с введением БДДА+МОЛ                                                          | 16.0                     | 141                     | 2.2 | 39.3                                       |
| 2–3 БА+МАК+ДМЭГ+ТАИЦ                                                              | 15.9                     | 141                     | 2.6 | 49.6                                       |
| 1–3 БА+МАК+ММАА                                                                   | 14.6                     | 117                     | 3.1 | 43.4                                       |
| 3-3 БА+2ЭГА+БДДА+ИБМА+МАК+ДАИФ                                                    | 18.8                     | 172                     | 2.5 | 48.2                                       |
| 4–3 БА+2ЭГА+БДДА+ИБМА+МАК                                                         | 18.7                     | 215                     | 2.5 | 49.6                                       |
| 5–3 ММА+БА+БДДА+ДАИФ+МАК                                                          | 18.4                     | 48                      | 2.5 | 50.2                                       |
| 6–3 БА+МАК+БДДА+ДАИФ                                                              | 17.6                     | 141                     | 2.2 | 48.2                                       |
| № 2–11 БА+МАК+МЭГ+ГМА                                                             | 18.2                     | 68                      | 4.3 | 44.8                                       |
| Акрэмос 404 39,7БА+59,3МАК+<br>+1 винилтриэтоксисилан<br>(ТУ 6-02-5757593-175-92) | 18                       | 180÷350                 | ≤5  | _                                          |

Ниже приведены характеристики поливинилацетатных дисперсий, использованных в качестве плёнкообразователей в клеевых композициях, а также других ингредиентов.

 $Д\Phi$  51/15В — дисперсия поливинилацетатная высокодисперсная пластифицированная дибутилфталатом. Содержание свободного винилацетата — не более 0.5 %; рH = 4.5 - 6.0; вязкость (по кружке BMC) - 80–100 c; сухой остаток - 51 %.

ДПМ 50/35B — дисперсия сополимера винилацетата с дибутилмалеинатом (65:35) высокодисперсная полиграфическая; сухой остаток — 50%; эмульгатор — ПВС; вязкость (по кружке ВМС) — не менее 20 с.

ДИБ 49/2.5 M — дисперсия поливинилацетатная модифицированная; сухой остаток — 49 %; количество пластификатора ДБФ — 2.5 %.

## Другие загустители

Гипан (ТУ 6–01–166–89) – гидролизованный полиакрилонитрил. Получается полимеризацией МАК в среде растворителя – водного конденсата, с последующим гидролизом образующегося ПАН едким натром в соотношении 50 : 50. Представляет собой высоковязкую желтоватого цвета жидкость, хорошо растворимую в воде.

КМЦ – карбоксиметилцеллюлоза (ОСТ 6-05-386-73).

Спирт поливиниловый [—CH  $_2$  CH(OH)—]  $_{\rm n.}$  Температура плавления 230 °C, растворим в воде, плотность: 1,25 г/см $^3$  (20 °C). При содержании 10–15 % винилацетатных звеньев полимер растворяется в холодной воде.

Полиакриламид [—CH<sub>2</sub>CH(CONH<sub>2</sub>)—]<sub>n</sub>. Твердое аморфное белое или частично прозрачное вещество без запаха; мол. м.  $10^4$ – $10^7$  (в зависимости от условий получения); плотность 1,302 г/см<sup>3</sup> (23 °C), растворим в воде.

Крахмал картофельный.

Манутекс RS — соли альгиновой кислоты. Производится из бурых водорослей и представляет собой светло-коричневый порошок.

### Пластификаторы

 $ДО\Phi$  — диоктилфталат. Представляет собой сложный эфир ортофталевой кислоты и этилгексилового (вторичного октилового) спирта ( $C_{24}H_{38}O_4$ ).

ББФ (ТУ 6–01–568–79) — бутилбензилфталат — сложный эфир бензилового и бутилового спиртов и ортофталевой кислоты ( $C_{19}H_{20}O_4$ ).

### Отвердители

Метазин — предконденсат меламиноформальдегидной смолы (водный раствор). Смесь метиловых эфиров оксиметильных производных меламина; pH = 7.3-8.0; содержание общего азота 15–18 %; содержание свободного  $CH_2O$  — не более 5 %.

Алифатическая эпоксидная смола ДЭГ–1 (ТУ 6-05-1823-77), м.м. =  $240 \div 230$ :

## Другие вещества

Аммиак водный – 25%-й водный раствор аммиака.

Антивспениватель БА (ТУ 6–14–07–31–76) – композиция неионогенных поверхностно-активных веществ с кремнийорганическими жидкостями.

Глицерин  $C_3H_5(OH)_3$ .

Этиленгликоль  $HO - CH_2 - CH_2 - OH$ .

Бутиленгликоль (1,4-бутандиол) — бесцветная вязкая низколетучая жидкость со сладковатым вкусом. Хорошо растворим в воде, спиртах, ацетоне, ограниченно растворим в эфире, хлорбензоле,  $CCl_4$ ; плохо растворим в неполярных растворителях.

Сода кальцинированная Na<sub>2</sub>CO<sub>3</sub>.

Натрия гидрокарбонат NaHCO<sub>3</sub> и натрия гидроксид NaOH.

Двуокись титана:

— анатазной формы марки A-02: белизна, усл. ед. - 97.0; содержание TiO $_2$  - 94 %; разбеливающая способность - 1200 (по ГОСТ 9529-75); укрывистость - 40 г/м $^2$ ;

— рутильной формы марки P—02: белизна, усл. ед. — 92.0; содержание  $TiO_2$  — 93 %; разбеливающая способность — 1600 (по  $\Gamma$ OCT 9529—75); укрывистость —  $40 \ \Gamma/M^2$ .

Мочевина (диамид угольной кислоты)  $CO(NH_2)_2$  кристаллическая, марка A.

В *табл. 2.4* перечислены термопластичные порошки, использованные в исследованиях технологии термопереноса ворса.

Таблица 2.4. Ассортимент термопластичных порошков

| Наименование, тор-<br>говая марка, артикул                    | Изготовитель                         | Характеристика                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Полиамидный порошок марки 1 (ПА1), ТУ 6-05-081-152-72         | ПО «Пластик»<br>(г. Екатеринбург)    | Получают путем механического измельчения ударно-резательным способом спирторастворимого полиамида П–540 (ТУ 6–05–1032–73)                                                                                                                                                                                                                                                                                                                                                                               |
| Полиамид 6/66 порошкообразный марки Б (ПА Б), ТУ 6–05–1956–83 | ПО «Пластик»<br>(г. Екатеринбург)    | Изготавливается дроблением полиамида спирторастворимого марки ПА 6/66–3 (ОСТ 6–05–438–83) и применяется для изготовления клеевых прокладочных полотен с точечным регулярным нанесением с подплавлением. Насыпная плотность – 0.40 г/см <sup>2</sup>                                                                                                                                                                                                                                                     |
| Поливинилбутираль<br>(ПВБ)                                    | Донецк                               | Аморфный полимер белого цвета. Степень полимеризации составляет $500 - 1600$ . Плотность $-1.1 \text{ г/см}^3$ . Растворяется в спиртах, кетонах, сложных эфирах, уксусной кислоте, не растворяется в бензине, керосине, жирах, этиловом эфире. Прозрачен, бесцветен, светостоек. Получен конденсацией поливинилового спирта с масляным альдегидом в водной среде в присутствии соляной кислоты (катализатор). Образующийся полимер выпадает в виде мелкодисперсного порошка. $T_{nn}$ = $140 - 160$ °C |
| Бутираль эпоксидный новолачный (БЭН)                          | ОАО «Карболит»<br>(г. Орехово-Зуево) | Двухкомпонентный полимер, высокочувствителен к давлению. $T_{nn}$ = $80-180$ °C                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Сополимер винилацетата с этиленом (ЭВА)                       | АО «Казаньорг-<br>синтез»            | Кристаллический сополимер белого цвета, прозрачен, высокоэластичен. Содержит $2$ –30 % ацетата. М.м. = $30$ – $500$ тыс. Порошок получают размолом полимера при замораживании. $T_{\rm пл} = 140$ – $160$ °C.                                                                                                                                                                                                                                                                                           |
| Platamid H <sub>0</sub>                                       | «Дойче Атокем<br>Верке» (Германия)   | Сополиамид, T <sub>пл</sub> = 115–125 °C. Используется для нанесения на прокладочные материалы в швейном и обувном производствах                                                                                                                                                                                                                                                                                                                                                                        |
| Griltex EMS                                                   | «EMS Grilon»<br>(Германия)           | Сополиамид                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Полиэтиленовый марки ПЭНД 273                                 | ОАО «Ставролен» (г. Буденновск)      | Сополимер этилена с α-бутиленом (1–3 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Гранулометрический состав порошков изучен с помощью объективного и окулярного микрометров на микроскопе «Биолам» (maбл. 2.5) и приборе Flock-in-Speckt (maбл. 2.6).

Таблица 2.5. Свойства термопластичных порошков

| Вид по-<br>рошка | Средний размер по-<br>перечника частиц,<br>мкм | Коэффициент<br>вариации, % | Температура плавления, °C (справочные данные) |
|------------------|------------------------------------------------|----------------------------|-----------------------------------------------|
| ПА м.1           | 794                                            | 27                         | 200                                           |
| ПВБ              | 43                                             | 32                         | 140–160                                       |
| НЕа              | 34                                             | 47                         | 80–180                                        |
| ЭВА              | 398                                            | 42                         | 140–160                                       |

Таблица 2.6. Гранулометрический состав термопластичных порошков

|                                 | Размер         | Сод    | Содержание (%) частиц размером, мкм |         |         |              |
|---------------------------------|----------------|--------|-------------------------------------|---------|---------|--------------|
| Марка порошка                   | частиц,<br>мкм | 0 - 50 | 50–100                              | 100–150 | 150–200 | свыше<br>200 |
| Крупнодисперсный (ПО «Пластик») | 100–600        | I      | ı                                   | 11      | 40      | 49           |
| Мелкодисперсный (ПО «Пластик»)  | 90–270         | I      | 11                                  | 51      | 29      | 9            |
| Filtex                          | 20–90          | 73     | 27                                  | _       | -       |              |
| Platamid H <sub>0</sub>         | 20–90          | 62     | 38                                  | _       | _       | _            |
| Griltex EMS                     | 90–230         | _      | 8                                   | 42      | 37      | 13           |

Характеристика состава и физико-химические свойства поверхностноактивных веществ представлены в *табл. 2.7* и *2.8*.

Таблица 2.7. Составы ПАВ [81]

| Марка ПАВ (номер технического усло- | Тип          | Состав                                                        | Формула                                                         |
|-------------------------------------|--------------|---------------------------------------------------------------|-----------------------------------------------------------------|
| вия или стандарта)                  |              |                                                               |                                                                 |
| ОП-10 [82]                          | Неионогенное | Продукт обработки смеси моно- и диалкилфенолов окисью этилена | $O(CH_2CH_2O)_m CH_2CH_2OH$ $C_nH_{2n+1}$ $C_nH_{2n+1}$         |
|                                     |              |                                                               | где $n = 8-12$ , $m = 10-12$                                    |
| A 10<br>(TY 38.103625-87)           | Неионгенное  | Смесь полиглико-<br>левых эфиров мо-<br>ноалкилфенолов        | $O(CH_2CH_2O)_mH$ $R$ где $R$ — разветвленный алкильный радикал |

|  | $CH_{2}$      |
|--|---------------|
|  | $c_{n+1}$     |
|  | M 0 10        |
|  | N = 9, m = 10 |
|  | _ , _ ,       |

## Окончание табл. 2.7

| Марка ПАВ (номер технического условия или стандарта) | Тип                                          | Состав                                  | Формула                                                                              |
|------------------------------------------------------|----------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|
| TV (6-02-09-1387)                                    | Смешанного действия (анионное, неионогенное) | Продукт сульфатирования (15–20 %) ОП–10 | $C_nH_{2n+1}$ $O(CH_2CH_2O)_mH$ $NH_4O_3S$ $NH_4O_3S$ $\Gamma$ де $n=9,m=10$         |
| Триамон<br>(ТУ 14–1059–83)                           | Катионное                                    | Четвертичная ам-<br>мониевая соль       | $ \begin{array}{c} [(HOCH_2CH_2)_3NCH_3^+] \cdot \\ \cdot [CH_3SO_4^-] \end{array} $ |

## Таблица 2.8. Физико-химические свойства ПАВ [81]

|           |                                                        | Значе |
|-----------|--------------------------------------------------------|-------|
| Марка ПАВ | Свойства                                               |       |
|           |                                                        |       |
|           | рН водного раствора концентрацией 10 г/л               | 6–8   |
|           | Поверхностное натяжение водного раствора концентрацией | _     |
|           | 5 г/л, не более, мН/м                                  | 37    |
| ОП-10     | Массовая доля основного вещества, не менее, %          | 80    |
| 011 10    | Хорошо растворим в воде, ККМ, г/л                      | 0.15  |
|           | ГЛБ                                                    | 13.5  |
|           | Токсичность: БР (10 мг/л), %                           | 40    |
|           | вызывает раздражение слизистых оболочек, сухость кожи  |       |
|           | рН водного раствора концентрацией 10 г/л               | 6–8   |
| Неонол    | Массовая доля основного вещества, не менее, %          | 98    |
|           | Хорошо растворим в воде и органических растворителях   |       |
| АФ 9–10   | Токсичность: БР (10 мг/л), %                           | 90    |
|           | малотоксичен                                           |       |
|           | рН водного раствора концентрацией 10 г/л               | 8–10  |
|           | Содержание: нелетучих компонентов, не менее, %         | 75    |
|           | азота, не менее, %                                     | 0.2   |
| C-10      | $(NH_4)_2SO_4$ , не более, %                           | 0.5   |
|           | NH <sub>3</sub> , не более, %                          | 0.15  |
|           | Хорошо растворим в воде, ККМ, г/л                      | 0.15  |
|           | Токсичность: БР (10 мг/л), %                           | 90    |
|           | дерматологически мягкое вещество                       |       |
| Триамон   | Хорошо растворим в воде. Умеренно токсичен             |       |

Примечания: 1. ККМ – критическая концентрация мицеллообразования. 2. ГЛБ – гидрофильно-липофильный баланс. 3. БР – биоразлагаемость.

### Рецептуры печатных красок

Peцептура 1 (на основе активных красителей, обладающих сродством к вискозным и полиамидным волокнам), мас. ч.:

| Краситель активный                | 10  |
|-----------------------------------|-----|
| Мочевина с водой (1:1)            | 200 |
| Загустка                          | 150 |
| Бикарбонат натрия                 | 15  |
| Вода $(t = 30  ^{\circ}\text{C})$ | 30  |

В этом рецепте использована 2%-я загустка из манутекса RS: манутекс растворяют в воде с температурой 25÷30 °C и перемешивают 20–30 мин. Сухую мочевину растворяют в горячей воде с температурой 80 °C и подогревают до 60 °C. Засыпают сухой краситель, тщательно растворяют. В случае плохого растворения нагревают и процеживают через сито. Разводят теплой водой бикарбонат натрия и заливают в краску, затем все тщательно перемешивают.

*Рецептура 2* (на основе прямых красителей, обладающих сродством к вискозному волокну), мас. ч.:

| 30    |
|-------|
| 200   |
| 150   |
| 60    |
| 40    |
| 500   |
| 15    |
| 5     |
|       |
| 91    |
| 900.9 |
| 3.6   |
| 4.5   |
|       |

Приготовление загустки. Крахмал залить холодной водой и тщательно размешать. В образовавшееся крахмальное молоко влить соляную кислоту, размешать и пустить пар. Варить загустку следует при постоянной работе мешалки до получения густой массы, до кипения не доводить. Затем добавить каустик, закрыть пар и пустить охлаждение.

Печатную краску приготавливают путем последовательного перемешивания выше перечисленных компонентов.

*Рецептура 3* (на основе дисперсных красителей, обладающих сродством к полиамидному волокну), мас. ч.:

| Краситель дисперсный | 10  |
|----------------------|-----|
| Вода горячая         | 25  |
| Мочевина             | 20  |
| Вода горячая         | 20  |
| Загустка             | 175 |

В этой печатной краске используется загустка из манутекса RS (2%-я); приготовление печатной краски, как в рецепте 1.

Рецептура 4 (для переводной печати «сублиматик»), мас. ч.:

| Дисперсный краситель | 20   |
|----------------------|------|
| Диэтиленгликоль      | 30   |
| Стеарокс-6 [83]      | 30   |
| Загустка             | .860 |
| Вода                 |      |

Используется загустка в виде 3%-го манутекса RS. Краситель затирают в пасту с диэтиленгликолем, добавляют воду, все тщательно перемешивают и вводят загустку, к которой предварительно добавляют стеарокс—6.

*Рецептура 5* (на основе пигментов, которые инертны к волокнам и могут быть приклеены к текстильному материалу из любого волокна или смеси волокон пленкообразующим веществом).

Печатную краску получают путем добавления пигмента в загустку. Количество пигмента берется в зависимости от требуемой яркости.

| Рецепт загустки (ф. BASF, Германи | ия) мас. ч.: |
|-----------------------------------|--------------|
| Latexal HP                        | 35           |
| Luprintol MC/S                    | 20           |
| Luprimol SJFSK                    | 5            |
| Helisarinbinder TW                |              |
| Fixierer S                        | 5            |
| Вода холодная                     | 750          |

Загустку приготавливали путем последовательного перемешивания перечисленных компонентов в течение 15 мин.

# 2.1.2. Характеристики материалов, использованных в качестве основы для флокирования

В качестве основы для флокирования использованы текстильные материалы (одёжные и технические ткани, трикотажные полотна, нетканые материалы), бумага для обоев [84], металлическая фольга, а также полимерные плёнки.

В качестве временного носителя ворсового слоя использовалась бумага пачечная двухслойная для упаковывания папирос и сигарет, марка Б (ТУ РБ

00280146.009—94), производства ОАО «Слонимский картонно-бумажный завод «Альбертин». На покровный слой этой бумаги используется белая макулатура, на основной слой — сборная макулатура. Технические характеристики бумаги приведены в *табл. 2.9*.

Таблица 2.9. Характеристика бумаги пачечной марки Б

| Показатель                                                             | Норма        |
|------------------------------------------------------------------------|--------------|
| Масса бумаги площадью 1 м <sup>2</sup> , г                             | $190 \pm 8$  |
| Толщина, мкм                                                           | $300 \pm 20$ |
| Разрушающее усилие в продольном направлении Н (кгс), не менее          | 70           |
| Скручиваемость бумаги на воздухе, мм не более                          | 10           |
| Поверхностная впитываемость воды при одностороннем смачивании, $r/m^2$ | 20–30        |
| Массовая доля золы, % не более                                         | 15           |
| Белизна (верхней стороны), %                                           | 60           |

Характеристики тканей и трикотажных полотен одёжного назначения приведены в  $maбn.\ 2.10$  и 2.11.

Таблица 2.10. **Характеристика трикотажных полотен, использованных** в качестве основы

| Но- | Артикул         | Поверхностная           | Сырье       | Переплетение |
|-----|-----------------|-------------------------|-------------|--------------|
| мер | пртикул         | плотность, $\Gamma/M^2$ | Сырьс       | Переплетение |
| 7   | 11411127322/104 | 322                     | НС, Пр Синт | Ластик 1×1   |
| 8   | 09111210200/109 | 200                     | Пр хб.      | Двуластик    |
| 9   | 01120806185     | 180                     | Пр хб.      | » »          |

Плёнка полиэтилентерефталатная марки М неокрашенная, которая может выдерживать температуры от минус 65 °C до 155 °C [85] использована при разработке теплоизоляционного флокированного материала. Для оценки влияния металлизации плёнку специально металлизировали с одной стороны или с двух сторон. Кроме плёнок, при разработке теплоизоляционного флокированного материала использовали нетканые материалы и ткани технического назначения, производимые фирмами США, характеристики которых приведены в *табл. 5.17*.

Таблица 2.11. Характеристика тканей, использованных в качестве основы

|                                                                                |                     |                             | Краткая техническая характеристика |                                        |                                         |                                        |                                              |         |
|--------------------------------------------------------------------------------|---------------------|-----------------------------|------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------------|---------|
| Продукция                                                                      | Арти-               | Поверх-<br>ностная<br>плот- | Осн                                | юва                                    | Уток                                    |                                        | Плотность, ко-<br>личество нитей<br>на 10 см |         |
|                                                                                | кул                 | ность<br>г/м <sup>2</sup>   | сырье                              | линейная<br>плотность,<br>текс (номер) | сырье                                   | линейная<br>плотность,<br>текс (номер) | по ос-                                       | по утку |
| 1. Полотно «Лето»                                                              | 72218               | 101                         | Пр Вис                             | 20.0 (50)                              | Пр Вис                                  | 20.0 (50)                              | 285                                          | 200     |
| 2. Поплин                                                                      | 42764               | 94                          | Н Вис                              | 13.3 (75.2)                            | Пр х/б                                  | 11.8.2 (84.7/2)                        | 391                                          | 202     |
| 3. Ткань «Виринея»                                                             | 42389               | 102                         | Н Ац                               | 16.6 (60.2)                            | НК мб 1100/750<br>круч. НАц<br>НК<br>НК | 11.0 (90.9)<br>5.0 (200)<br>2.2 (454)  | 380                                          | 228     |
| 4. Креп «Весна»                                                                | 41442               | 96                          | Хлопок                             | (54)                                   | Хлопок                                  | (65)                                   | 301                                          | 243     |
| 5. Ткань сорочечная пестротканая с малосминаемой отделкой                      | 062259              | 135                         | С х/б                              | 29 (34.5)                              | ВМ, ВЛ ВЛс-62 %                         | 33.5 (29.8)                            | 240                                          | 178     |
| 6. Ткань подкладочная                                                          | H185<br>БЛ<br>52418 | 71                          | Н ПЭФ 180<br>круч                  | 9.5 (105)                              | НПЭФ текстур.<br>среднерастяж.          | 12.0 (83.3)                            | 390                                          | 290     |
| 10. Ткань сорочечная «Протон» хлопкополиэфирная мерсеризованная гладкокрашеная |                     | 100                         | греб. ВПЭФ<br>45%                  | 18,5                                   | Греб. ВПЭФ 45 %                         | 18,5                                   | 280                                          | 220     |
| 11. Ткань капроновая с отделкой «Лаке»                                         | 52185<br>ПКДС       | 57                          | НК 300<br>круч.                    | 6,7                                    | НК                                      | 6,7                                    | 550                                          | 326     |
| 12. Ткань плательная «Снежана»                                                 | 72337               | 170                         | Пр Вис 67%<br>В ПЭФ 33%            | 25.0x2                                 | ПрВис 67%<br>ВПЭФ 33%                   | 25.0x2                                 | 184                                          | 164     |

### Окончание табл. 2.11

|                                 |       | Краткая техническая характеристика |                              |                                        |                          |                                        |                                              |         |  |
|---------------------------------|-------|------------------------------------|------------------------------|----------------------------------------|--------------------------|----------------------------------------|----------------------------------------------|---------|--|
| Продукция                       | Арти- | Поверх-<br>ностная<br>плот-        | ая Основа                    |                                        | Уток                     |                                        | Плотность, ко-<br>личество нитей<br>на 10 см |         |  |
| кул                             |       | ность<br>г/м <sup>2</sup>          | сырье                        | линейная<br>плотность,<br>текс (номер) | сырье                    | линейная<br>плотность,<br>текс (номер) | по ос-                                       | по утку |  |
| 13. Ткань плательная «Прелесть» | 53036 | 117                                | Н ПЭФ<br>текст. 200<br>круч. | 11.0x2                                 | НПЭФ текст.<br>200 круч. | 11.0x2                                 | 533                                          | 390     |  |

### 2.1.3. Свойства ворса, применявшегося в исследованиях

Технические характеристики ворса, использованного в исследованиях, содержатся в *табл. 2.12*.

Таблица 2.12. Технические характеристики ворса

| Вид во-         | Ппипо  | Линейная   | Разделяемость, | Электросопротивление, |
|-----------------|--------|------------|----------------|-----------------------|
|                 | Длина, | плотность, | %              | Ом                    |
| локна           | MM     | текс       |                |                       |
| Вис             | 0.3    | 0,31       | 99             | -                     |
| <b>&gt;&gt;</b> | 0.5    | 0,31       | 95             | -                     |
| <b>&gt;&gt;</b> | 0.5    | 1,7        | 95             | $7.10^{5}$            |
| <b>&gt;&gt;</b> | 1.5    |            | 92             | $8.10^{6}$            |
| ПА              | 1.0    | 0,67       | 100            | $6.10^{8}$            |
| <b>&gt;&gt;</b> | 2.0    | 2,2        | 100            | $6.10^{8}$            |
| <b>&gt;&gt;</b> | 3.0    | 2,2        | 98             | $6.10^{8}$            |
| <b>&gt;&gt;</b> | 4.0    | 4,4        | 96             | $4.10^{8}$            |

# 2.2. Описание лабораторных установок для одноцветного и многоцветного флокирования

Технологический процесс получения рисунков методом электрофлокирования включает следующие операции: нанесение клеевого рисунка, нанесение ворса (последовательное нанесение ворса разных цветов в случае многоцветного рисунка), сушка и термофиксация клея, очистка готового изделия от не закрепившегося ворса. Все операции могут осуществляться вручную или автоматически.

Поскольку выполнение таких операций, как печать клеем вручную через сетчатый шаблон или флокирование с помощью аппликатора (ручного наносителя) довольно трудоёмко, в ЛИТЛП им. С. М. Кирова, а позднее в СПбГУПТД были проведены работы по созданию специального оборудования для нанесения флокированных рисунков. Особенно необходимо такое оборудование при создании многоцветных рисунков, так как осуществлять вручную точную приводку элементов рисунка друг к другу и к клеевому отпечатку крайне трудно и добиться высокого качества практически невозможно.

## 2.2.1. Лабораторная автоматизированная установка для двухцветного флокирования УМФ–2/1

На кафедре технологии нетканых материалов коллективом авторов [86], [87] разработана и изготовлена установка для печати ворсом в два цвета УМ $\Phi$ –2/1 (*puc. 2.1*), которая имеет форму карусели, оборудована поворотной

платформой с четырьмя столами, клеенаносителем и двумя флокаторами.

| Основные технические данные   | 2      |
|-------------------------------|--------|
| Количество рабочих столов, шт | 4      |
| Количество приводов, шт.      | 3      |
| Мощность электроприводов, Вт: |        |
| клеенаносителя                | 60     |
| флокатора                     | 2 x 80 |
| Габариты, мм:                 |        |
|                               | 2100   |
| ширина                        | 2000   |
| высота                        | 1400   |
| Вес, кг                       | 270    |
|                               |        |

#### Описание основных узлов

Станина установки предназначена для установки рабочих узлов: клеенаносителя, двух флокаторов и платформы со столами. Станина (рис. 2.1) состоит из поворотного стола 5 и каркаса 2. Поворотный стол предназначен для закрепления материала, поворота столов в рабочую зону и их подъёма на определённую величину (30 мм). Дальнейший подъём столов ограничен упором 10. Поворот столов и подъём осуществляется вручную с помощью рычага 11. Усилие подъёма 3—4 кг. Поворотный стол состоит из рамы 9, рычага 11, предназначенного для подъёма и опускания столов, основания столов 6, на котором устанавливается рабочий стол 7.




Рис. 2.1. Лабораторая установка УМФ–2/1

Регулировка поворотного стола по высоте осуществляется регулиро-

вочными болтами 1. Более точная регулировка столов с помощью винтов 8.

Каркас 2 предназначен для установки рабочих узлов. На нижнюю плоскость каркаса устанавливается поворотный стол 5, на верхнюю — устанавливается клеенаноситель 3 и два флокатора 4.

 $\Phi$ локатор (рис. 2.2) предназначен для нанесения ворса на изделие в электрическом поле, создаваемом между электродом-ситом I и заземлённым нижним электродом-столом.

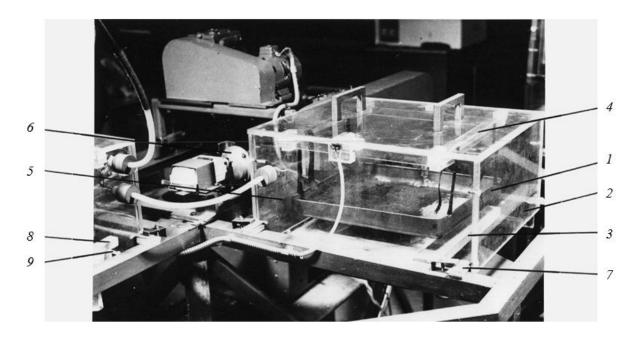



Рис. 2.2. Флокатор

Флокатор состоит из изоляционного корпуса 2, сита 1, рамки с шаблоном 3 для ворса. На сито подаётся высокое напряжение 10-50 кВ от источника высокого напряжения ЭРГ-80 или АФ-3. Уровень сита над столом регулируется в пределах 40-150 мм с помощью рамки 4. Сито совершает колебательное движение от привода через рычаг 5. Амплитуду колебаний можно регулировать от 1 до 4 мм при применении эксцентрика 6 и таким образом осуществлять различную подачу ворса в рабочую зону.

По высоте флокатор выставляется с помощью уголков 7, под которые подкладываются подкладки различной толщины. Во флокаторе установлен шаблон 3, который вставляется в направляющие 8 и регулируется винтами 9.

*Клеенаноситель* (*puc. 2.3*) предназначен для нанесения на поверхность трикотажного материала клея путём продавливания его через сетчатый шаблон.

Клеенаноситель состоит из рамы 1, ракли 2, привода 3. Рама 1 изготовлена из трубы квадратного сечения и служит для размещения на ней рабочих узлов устройства. Рама крепится к основанию машины при помощи уголка 4 и болтов 5.

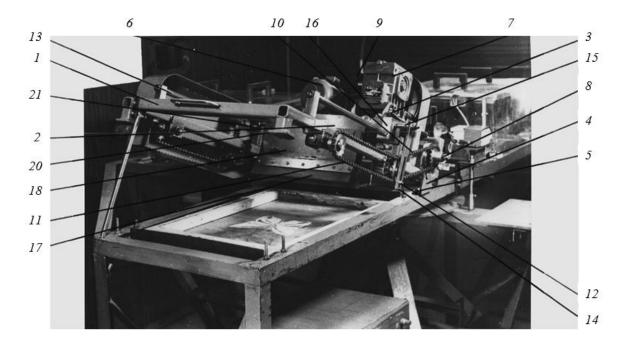



Рис. 2.3. Клеенаноситель

Привод состоит из электродвигателя 6, редуктора 7 и вала 8. Вращательное движение от двигателя передается через редуктор, цепную передачу 9 и 10 на цепь 11, на которой закреплён палец 12. Палец приводит в движение раклю 2, которая движется возвратно-поступательно по направляющим 13.

Ракля состоит из поводка 14, закреплённого на валу 15 с двух сторон, ползуна 16 и двух съёмных ножей 17, расположенных на пластине 8. Ножи по высоте регулируются винтами 20.

Люфт в направляющих устраняется с помощью тормоза 21.

Устройство управления предназначено для управления работой отдельных узлов и механизмов установки с помощью команд, поступающих с пульта управления. Устройство выполняет следующие функции:

- 1) пуск двигателей приводов вибрации и клеенаносителя (ракли) при нажатии оператором соответствующих кнопок «пуск» на пульте управления;
  - 2) плавная регулировка частоты вибрации и скорости движения ракли;
  - 3) пуск таймера одновременно с пуском двигателей вибрации;
- 4) счёт времени работы двигателей приводов вибрации и их автоматический останов по истечении заданного времени. Время работы таймера устанавливается оператором на пульте устройства управления и может изменяться в интервале от 1 до 30 с с дискретностью 1 с. При этом обеспечивается визуальная индикация работы таймера на светодиодном табло;
- 5) ручной останов двигателей приводов вибрации с помощью кнопки «стоп» на пульте.

Подсчёт числа проходов клеенаносителя и автоматический останов при достижении заданного числа проходов. Число проходов устанавливается оператором на пульте и может изменяться от 1 до 6.

- Ручной останов двигателя привода клеенаносителя с помощью кнопки «стоп», расположенной на пульте управления.
- Одновременный пуск двигателей приводов вибрации и клеенаносителя или их автономный пуск.
- Звуковая двухтональная сигнализация, оповещающая оператора о готовности установки к пуску двигателей приводов.
- Пуск двигателей приводов клеенаносителя и вибрации автоматический в случае реализации циклического алгоритма работы установки.

#### Описание работы установки

Подготовка к работе. Производят регулировку узла печати. Для получения ровного отпечатка регулируют положение печатного стола и ракельных ножей. Плоскость стола и нижняя кромка ракли должны быть абсолютно горизонтальны и параллельны друг другу. Печать обычно осуществляют без зазора между сеткой шаблона и основой. Поскольку положение шаблона по высоте неизменно, зазор между столом и шаблоном устанавливают регулировкой стола в зависимости от толщины печатаемого материала. Сильное трение кромки ракли о шаблон может вызвать преждевременный износ трафаретного слоя, поэтому для регулировки высоты ракельных ножей предусмотрена регулировка (винты 20 на рис. 2.3).

Перед началом работы заполняют бункеры флокаторов выбранным ворсом. Печатные столы покрывают специальным невысыхающим клеем, который удерживает основу на столе, препятствуя её смещению во время печати и флокирования. Клей способен сохранять свои свойства в течение нескольких часов работы. После этого на пульте блока управления устанавливают необходимую величину хода ракли (в зависимости от размеров рисунка), задают число её проходов и скорость движения (в зависимости от используемой основы), а также время флокирования и величину подачи.

Клей для флокирования лучше всего вводить в зазор между ножами ракли. Непосредственно перед началом флокирования включают источник высокого напряжения.

*Юстировка шаблонов при смене рисунка*. Для получения чёткого рисунка необходимо отрегулировать положение шаблонов для клея и ворса по отношению друг к другу. Эту операцию необходимо проводить каждый раз при замене рисунка. Отрегулировав печатные столы, получают отпечаток на основе (лучше всего с помощью печатной пасты или подкрашенного клея). Повернув столы на 45° влево, с помощью винтов 9 (см. *рис. 2.2*) регулируют положение первого шаблона для ворса (маски) по отношению к клеевому отпечатку. Затем, включив источник высокого напряжения и подачу флокатора, наносят ворс первого цвета. Повернув столы ещё на 45° влево, подводят полученный рисунок под

шаблон 2 и также с помощью регулировочных винтов приводят их в соответствие друг к другу. Нанеся ворс второго цвета, осматривают полученный рисунок. Последовательно нанесённые ворсовые элементы в сумме должны абсолютно точно соответствовать клеевому отпечатку. При выявлении каких-либо смещений всю операцию необходимо повторить до получения чёткого рисунка.

При регулировке положения ограничительных шаблонов для ворса необходимо отключать напряжение флокатора.

*Проведение технологических операций*. После отладки шаблонов приступают к нанесению ворсовых рисунков на изделия. Работа оператора заключается в следующем:

- 1. Положить заготовку А на печатный стол.
- 2. Повернуть столы на 45° влево и, подведя таким образом заготовку под сетчатый шаблон, поднять и зафиксировать столы поворотом рычага.
  - 3. Нажать на кнопку «пуск» ракли.
  - 4. Положить следующую заготовку В на второй печатный стол.
- 5. По окончании печати опустить столы, повернуть их на 45° влево и вновь поднять и зафиксировать их положение.
- 6. Нажать на кнопки «пуск» ракли и первого флокатора, обеспечив печать клеем заготовки В и нанесение ворса первого цвета на заготовку А.
  - 7. Положить заготовку С на третий стол.
  - 8. По окончании печати и флокирования повернуть столы влево.
- 9. Нажать на кнопки «пуск» ракли и обоих флокаторов, обеспечив нанесение клея на заготовку C, флокирование заготовки B ворсом 1 и заготовки A ворсом 2.
- 10. Полностью загрузить установку, положив заготовку на четвёртый печатный стол.
  - 11. Повернуть столы на  $45^{\circ}$ , нажать на кнопки по п. 9.
- 12. Снять со стола заготовку А с двухцветным флокированным рисунком и поместить её в сушилку.
  - 13. Положить на стол следующую заготовку и далее с п. 11.

При перерыве в печатании во избежание порчи шаблона необходимо либо покрыть площадь рисунка на шаблоне толстым слоем клея, либо полностью очистить шаблон от клея и тщательно промыть сетчатую поверхность под струёй воды.

Печатные столы, намазанные клеем, должны предохраняться тканью или трикотажем от попадания на них ворса во время загрузки или выгрузки бункера. После окончания работы необходимо вымыть сетчатый шаблон, полностью очистить от клея ракельные ножи, очистить бункеры от остатков ворса. Печатные столы, в случае загрязнения, протереть растворителем.

### 2.2.2. Ручная установка для печати

Эксперименты по созданию многоцветных эффектов флокирования проводились на карусельной установке фирмы *Schenk* (*puc. 2.4*), которая состоит из неподвижного печатного стола, укреплённого на тяжёлой станине, и четырех креплений для шаблонов. Крепления расположены на поворотной платформе, которую вручную поворачивают вокруг станины. Положение рабочего шаблона относительно печатного стола фиксируется с помощью специального массивного фиксатора, укреплённого на печатном столе.

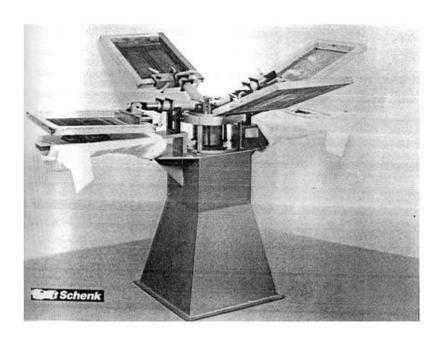



Рис. 2.4. Ручная установка для печати фирмы *Schenk* (Германия)

На столе с помощью невысыхающего клея укрепляли хлопчатобумажную ткань полотняного переплетения. В одном из поворотных креплений устанавливали шаблон для клея, а в трех других — сетчатые шаблоны для ворса.

### 2.3. Методики и приборы для исследования свойств ворса, клея и клеевых плёнок

### 2.3.1. Оценка свойств ворса

Измерение геометрических параметров ворса и термопластичных порошков

Определение среднего диаметра ворса проводили путем промера одиночных волокон при оптическом испытании. Отобранную для анализа пробу тщательно перемешивали и кисточкой наносили ворс тонким слоем на пред-

метное стекло. Предметное стекло с ворсом устанавливали на предметный столик микроскопа, например Биолам. Диаметр измеряли микрометром, располагая ворсинки параллельно линиям окулярного микрометра вращением предметного столика микроскопа. Зная вид полимера волокна ворса, рассчитывали линейную плотность [88].

Для определения длины ворсинок и размеров термопластичных порошков использовался микроскопический метод или прибор *Flock-In-Spect* фирмы *Maag Flockmaschinen GmbH* (*puc. 2.5*). Прибор позволяет видеть на вертикальном экране с измерительной шкалой волокна или частицы при увеличении 24 или 72 раза.



Рис. 2.5. Прибор Flok-In-Spekt

Методика измерения электросопротивления ворса

Наиболее важным электрофизическим свойством ворса является электропроводимость (сопротивление). Для измерений использовали два прибора: пресс-датчик [6], подключенный к тераомметру с пределом измерения  $10^6$ – $10^{12}$  Ом, и прибор, принятый европейским обществом флокировщиков DMB–6.

Постоянство контактных условий в смеси ворс — воздух обеспечивается спрессовкой ворсинок между электродами датчика под давлением порядка 15 мПа, которое создаётся с помощью лабораторного гидравлического пресса с усилием до 5 т.

Для измерения от просеянного ворса берут навеску массой 5 г, снимают нижнюю крышку и ворс помещают в полость внутрь датчика. Нижнюю крышку устанавливают на место и вращением микрометрического винта создают плотность упаковки ворса  $\gamma_0 = 0.45\gamma$  [9], где  $\gamma$  – плотность волокна. Расстояние между электродами h (см) рассчитывают по формуле

$$h = \frac{m}{S \cdot \gamma_0}, \tag{2.1}$$

где m – масса навески ворса, г;

S – площадь поверхности верхнего электрода, см $^{2}$ .

По показаниям тераомметра определяют электросопротивление ворса. Электропроводимость ворса рассчитывают по формуле

$$\lambda = \frac{h}{R \cdot S} \left( \frac{2\gamma}{\gamma_0} - 1 \right), \tag{2.2}$$

где  $\lambda$  – электропроводимость ворса, Om<sup>-1</sup>·cm<sup>-1</sup>,

R — электрическое сопротивление образца ворса, Ом.

Из трех результатов измерения определяют среднее значение.

Внешний вид прибора DMB–6 представлен на *рис.* 2.6. Методика измерения заключается в том, что для каждого образца ворса готовят не менее трех проб по 20 г каждая. Пробы выдерживаются в течение 24 часов открытыми при 20 °C и 65%-й относительной влажности воздуха. После этого цилиндрическую емкость заполняют равномерно разрыхленной пробой ворса и устанавливают, слегка придавливая, верхний электрод. Измерительный прибор переключают в позицию «измерение», выбирают нужную шкалу и через 1 минуту считывают величину сопротивления. Из трех результатов измерения определяют среднее значение.

Методика определения разделяемости ворса

Способность волокон разделяться, или сыпучесть, оказывает большое влияние на начальный угол ориентации ворсин и на плотность их нанесения. Хорошая сыпучесть появляется в том, что в бункере при взаимном перемешивании ворсинки не образуют комков и свободно проходят через сетчатое дно [2], [11]. Характеристикой разделяемости ( $\delta$ ) ворса является коэффициент, равный отношению (в процентах) массы  $m_1$  ворса, просеявшегося через сетку за определенное время, к первоначальной массе творса при заданном режиме подачи ворса. Сравнивать этот коэффициент можно только для ворса одинаковых размеров и при постоянстве размеров сетки и времени просеивания.



Рис. 2.6. Прибор для измерения электропроводности ворса DMB-6

Измерения разделяемости проводили на приборе RPG 1000 фирмы *Maag Flockmaschinen GmbH*, имеющем вращающийся вокруг горизонтальной оси сетчатый цилиндр (*puc. 2.7*). Прибор укомплектован электронными весами.



Рис. 2.7. Прибор RPG 1000 для определения разделяемости ворса

# 2.3.2. Методики приготовления и оценки свойств клеевых композиций и отдельных ингредиентов

Методика приготовления клеевых композиций и печатных составов заключается в последовательном смешивании ингредиентов в указанной в рецептуре последовательности и перемешивании состава на гомогенизаторе в течение 1 мин. Приготовление вспененных клеевых композиций осуществляли на гомогенизаторе с механической лопастной мешалкой, имеющей регулируемую частоту вращения в пределах  $0-20 \, \mathrm{c}^{-1}$ .

Термический анализ клеев и полимерных порошков на дериватографе системы Ф. Паулик–И. Паулик–Л. Эрдеи

Схема прибора и принцип работы приведены в приложении В [89].

Исследования термопластичных полимеров проводились в следующих условиях: режим — динамический, навеска — 100 мг, чувствительность ДТА — 250 мкВ, чувствительность ДТС — 1 мВ, скорости нагрева 2.5; 5; 10 и 20 град/мин (регулируется программным устройством), интервал температур от 20 до 500 °C, инертное вещество — окись алюминия ( $Al_2O_3$ ), среда — воздушная.

Исследование взаимодействий ингредиентов клеевых композиций методом ИК-спектроскопии

ИК-спектры исследуемых веществ записывались на инфракрасном спектрофотометре UR–20 в области от 400 до 3800 см $^{-1}$  в естественном свете. Объектами исследования являлись пленки толщиной  $\cong 20$  мкм, отвержденные при комнатной температуре (режим сушки) и при 140 °C в течение 15 мин (режим термофиксации), что обусловливалось режимами термообработки флокированных материалов.

Перечень объектов исследования

- 1. Пленкообразователь МБМ-3.
- 2. Загуститель Акрэмос 402 (призма КВ 5/900).
- 3. Смесь МБМ–3 + загуститель Акрэмос 402 (100 : 10).
- 4. Смесь MБM–3 + Акрэмос 402 + триамон (100 : 10 : 0.5).
- 5. Смесь MБM-3 + Акрэмос 402 + неонол A $\Phi$  9-10 (100 : 10 : 0.5).
- 6. Смесь МБМ-3 + Акрэмос 402 + триамон + неонол АФ 9-10 (100 : 10 : 0.5 : 0.5) (только термообработанная).
  - 7. Смесь МБМ-3 + Акрэмос 402 + 25%-ный раствор аммиака.
- 8. Смесь МБМ-3 + Акрэмос 402 + 25%-ный раствор аммиака + неонол АФ 9-10.

Для идентификации состава газовыделений связующего использовали два метода хроматографического анализа на газовом хроматографе «Цвет-101» с пламенно-ионизационным детектором.

Первый метод — *идентификация по параметрам удерживания* с использованием чистых веществ-свидетелей и неподвижных фаз различной полярности:

- сепарона SDA (Separon SDA) 0.25 0.50 мм, (производство ф. «Ла Хема», Франция);
  - фенилметилсиликона (DS 550);
  - полиэтиленгликольадипината;
  - триэтилмонохлоргидрина пентаэритрита и валериановой кислоты.

Второй – *метод реакционной хроматографии*, заключающийся в обработке пробы воздуха химическими реагентами с последующим газохромато-

графическим контролем изменения состава. Для подтверждения присутствия в газовыделениях алифатических спиртов проводили обработку пробы нитритом натрия в кислой среде. После такой обработки на хроматограмме наблюдали появление пиков этилнитрита и н-бутилнитрита:

$$R-OH + NaNO_2 \xrightarrow{} RONO + NaOH,$$
  
 $0,1_{H} H_2SO_4$ 

где  $R - C_2H_5; -C_4H_9$ 

Количественное определение идентифицированных веществ проводилось методом абсолютной градуировки по каждому веществу. Исследование проводили с использованием стеклянной спиральной колонки  $2000 \times 3$  мм и газа-носителя азота, содержащей 10 % триэтилмонохлоргидрина пентаэритрита и валериновой кислоты на носителе ИНЗ 600.

Для получения градуировочной характеристики, выражающей зависимость высоты пика на хроматограмме от концентрации компонента, использовали герметичный эксикатор вместимостью 0,01 м³ и компрессор, специально предназначенный для приготовления газовых смесей. Дозирование в установку определяемых веществ осуществляли микрошприцем МШ-10М через резиновую мембрану ввода проб компрессора. Полное перемешивание введенных компонентов с воздухом эксикатора достигалось в течение 30 минут после включения компрессора. Отбор газовоздушных проб осуществляли медицинскими шприцами объемом 50 см³. Концентрацию веществ в установке определяли по формуле

$$C = \frac{dV}{V_{_{3KC}}},\tag{2.3}$$

где C – концентрация, мг/м<sup>3</sup>;

d – плотность чистого воздуха, мг/мкл;

V – объем пробы, мкл;

 $V_{
m экс}$  – объем эксикатора, равный 0,01 м<sup>3</sup>.

Методики определения вязкости клеевых композиций

Для определения вязкости клеевых композиций использовались методы, подходящие для жидких и пастообразных клеев.

Методика определения условной вязкости клеевой композиции

В зависимости от содержания загустителя вязкость клея существенно меняется. Условная вязкость пастообразных клеевых композиций определя-

лась на приборе ВП-3, состоящем из верхней и нижней пластин, по площади отпечатка следующим образом.

Три круглых стеклянных пластины диаметром 100 мм последовательно укладывали на технические весы и взвешивали на них по 2 г исследуемой клеевой композиции. После этого пластины с навесками укладывали по центру концентрических окружностей (в трёх местах начерченных на нижней пластине прибора) и закрывали крышкой прибора из прозрачного оргстекла. Вес крышки 206.4 г. Под действием веса крышки клей растекается, принимая форму окружности. С изменением вязкости клея меняется диаметр отпечатка, а следовательно, и его площадь. Условную вязкость клеевой композиции определяли по площади полученного отпечатка по истечении 1 мин. Высчитывали среднее значение из трех параллельных измерений.

Определение эффективной вязкости с помощью вискозиметра ротационного типа «Peomecm–2» [90]

Схема прибора и описание принципа работы приведены в *приложении*  $\Gamma$ . Измерения проводились с переменными скоростями сдвига по методу коаксиальных цилиндров, с измерительным цилиндром S1, при нормальной температуре для каждой композиции, при сдвигающем напряжении 4–800 Па и скорости сдвига  $0.0167-145.8 \, \mathrm{c}^{-1}$ . Объем пробы для измерений – 50 мл. Каждый образец перед проведением измерения термостатировали в течение 15 мин.

Поверхностное натяжение дисперсий с различным содержанием ПАВ определяли методом наибольшего давления в пузырьках газа [91], используя показания манометра:

$$\sigma = \Delta PK, \tag{2.4}$$

где  $\sigma$  – поверхностное натяжение исследуемого раствора, Дж/м<sup>2</sup>;

 $\Delta P$  – давление, соответствующее отрыву пузырька,  $H/M^2$ ;

К – константа капилляра.

Оптическую плотность разбавленных растворов водных полимерных дисперсий определяли на фотоэлектроколориметре КF—77, используя светофильтры с длиной волны 420 и 560 нм.

Определение скорости плёнкообразования

Скорость пленкообразования оценивали по изменению во времени массы жидкого связующего, нанесенного на фторопластовую пластину с помощью фторопластового кольца слоем толщиной  $0.5\,$  мм. Взвешивание осуществляли на технических весах через определенные промежутки времени с погрешностью до  $0.01\,$ г.

Резкость печати определяли как соотношение линейных размеров печатного элемента на шаблоне и соответствующего клеевого отпечатка на основе, выраженное в процентах. Измерение линейных размеров осуществляли

двусторонним нониусным штангенциркулем ШЦ-ІІ с пределом допускаемой погрешности 0,05 мм.

Tиражность печати клеем — специфическое технологическое свойство, характерное для печатных составов. Её оценивали количеством возможных четких отпечатков полосы шириной 1 мм, выполненной через плоский сетчатый шаблон с применением сетки № 25 (maбл. 4.4).

### 2.3.3. Методики приготовления и исследования свойств клеевых плёнок

Методика приготовления клеевых плёнок. Плёнки загущённых клеевых композиций отливали на фторопластовых пластинах с помощью колец с зазором 0,3; 0,5 и 0,7 мм. Отлитые плёнки сушили на воздухе, термофиксировали в сушильном шкафу при температуре 150 °C (соответственно технологическому режиму). Перед испытаниями плёнкам давали пролёжку семь суток для завершения химических процессов.

Прочность и относительное удлинение клеевых плёнок определяли в соответствии с методикой [92] на приборах РМ–3 и Adhesion Tester.

Методика определения прочностных показателей и эластичности клеевых пленок на приборе Adhesion Tester (Япония). Прибор состоит из двух основных блоков: испытательного стола с зажимами и записывающего устройства. Тензометрический датчик нагрузки высокой чувствительности 1 устанавливается на станине 10 и крепится к ней с помощью винтов (puc. 2.8).

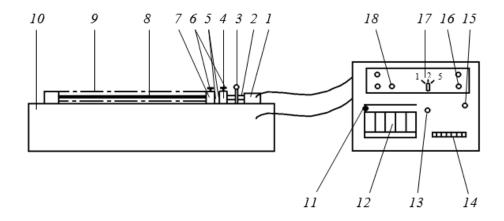



Рис. 2.8. Схема прибора Adhesion Tester

С помощью разъемного валика 2 датчик соединяется с неподвижным зажимом 4. Подвижный зажим 7 перемещается по направляющим стержням 8 с постоянной скоростью (100 мм/мин) при помощи цепного механизма привода 9. Для разъединения цепного механизма и двигателя служит рукоятка 3; нажав на нее, можно легко перемещать зажим 7 по направляющим пруткам

вручную. Ограничительные втулки 5, установленные на направляющих стержнях, служат для установки постоянного расстояния между зажимами и предотвращения возможной перегрузки датчика. Губки зажимов сжимаются с помощью затяжных винтов 6. Ослабив затяжные винты, образец вставляют между губками зажимов и закрепляют. Включают питание прибора кнопкой 16 и самописца кнопкой 15. Опускают перо 11 с помощью тумблера 13 и нажимают кнопочный переключатель 18 пуска двигателя подвижного зажима. Усилия, прилагаемые к образцу при его растягивании, передаются через неподвижный зажим на тензодатчик, сигналы от тензодатчика подаются на усилитель и после усиления поступают на записывающее устройство, вызывая смещение пера пропорционально величине усилия, приложенного к образцу. Величина выдерживаемой нагрузки образца определяется по шкале, расположенной на блоке записывающего устройства, пределы ее регулируются переключателем 17. Удлинение определяют по шкале, расположенной на блоке испытательного стола с зажимами. Скорость протяжки диаграммной ленты 12 регулируется с помощью кнопок 14.

Коэффициент пропускания клеевых плёнок определяли на шаровом фотометре ФМШ–56M.

Методика работы на приборе ПТП для определения температуры плавления

Техническая характеристика прибора ПТП

Диапазон измерения температуры, °С......20–360

Рабочие скорости нагрева, °С/мин......1; 2; 3; 4; 6; 8; 10

Максимальная скорость нагрева, °С/мин......50

Точность определения температуры, °С.......0.5

Потребляемая мощность, Вт......200

Порядок работы на приборе ПТП

Перед введением прибора в эксплуатацию проверяют его работу с помощью проведения пробного плавления двух эталонных веществ с известной температурой плавления.

Сухой порошок помещают в сухую и чистую капиллярную трубку 1 (рис. 2.9) из нейтрального стекла, запаянную с одного конца. Длина трубки 40–60 мм, внутренний диаметр 1–2 мм. Порошок в капиллярной трубке хорошо уплотняют (уплотнения достигают путем бросания капилляра в установленную вертикально на предметном столе трубку диаметром 8–10 мм и высотой 70–80 мм). Слой уплотненного вещества в капиллярной трубке должен быть от 2 до 8 мм.

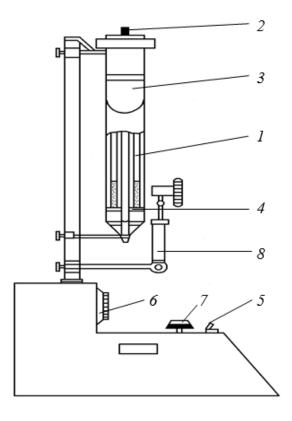



Рис. 2.9. Схема прибора ПТП

После включения прибора в сеть при помощи пробки с прорезью в нагреватель прибора 3 устанавливают термометр ТЛ–6 2. На термометрах посредством приспособления 4 устанавливают капилляры с порошком. По номограмме определяют напряжение, соответствующее скорости нагрева при ожидаемой температуре плавления.

Включают нагреватель *3* тумблером *5*. Наблюдая за показанием вольтметра *6*, регулятором напряжения *7* устанавливают напряжение 20 В. Ртутный резервуар термометра должен находиться в строго фиксированной точке внутри блока-нагревателя, а середина ртутного столбика термометра — на уровне метки, нанесенной на кожух блока-нагревателя.

Процесс плавления в капиллярах наблюдают при помощи оптического приспособления 8, а показания термометра – с помощью дополнительной лупы.

# 2.4. Методы и приборы для исследования свойств текстильных материалов

### 2.4.1. Методы определения линейных размеров, толщины и поверхностной плотности

*Толщину* материалов определяли по стандартной методике с помощью толщиномера индикаторного TP 10–1 с погрешностью 0,01 мм.

Важнейшим специфическим свойством флокированных материалов являются плотность нанесения ворса. Плотность нанесения ворса (плотность флокирования) является критерием не только качества материала, но и для данного вида ворса – критерием оптимизации самой технологии. Плотность флокирования n — число ворсинок, нанесенных на 1 мм<sup>2</sup> поверхности материала — экспериментально определялась прямым микроскопическим методом, путем подсчета количества волокон, находящихся на определенной площади, с помощью окулярной сетки в отраженном свете [59]. Использован прямой способ подсчета ворсинок на определенной площади под микроскопом. Суть метода заключается в следующем: с помощью объектива получают увеличенное изображение ворсового покрова в отраженном свете, которое рассматривают через окуляр с сеткой, а подсчет волокон производят визуально на площади 1 мм<sup>2</sup> несколько раз и усредняют. Этот метод является абсолютным и позволяет подсчитать непосредственно количество волокон на единице площади, т. е. плотность ворса. Для подсчета волокон необходимо фокусировать микроскоп сначала на верхние торцы прямостоящих волокон, затем на волокна, расположенные под углом к вертикали, т. е. на более глубокий слой.

Определение *поверхностной плотности ворсового слоя*  $(m_0, \Gamma/M^2)$  осуществляли по формуле

$$m_0 = \frac{m_1 - m_2}{S} \,, \tag{2.5}$$

где  $m_1$  – масса образца с ворсом, г;

 $m_2$  – масса равного по площади образца субстрата с клеем, г;

S — площадь образца,  $M^2$ .

Величины n и  $m_0$  можно связать между собой через параметры отдельной ворсинки:

$$n = 4m_0/(10^3 \pi \cdot \gamma \bar{d}^2 e^2),$$

(2.6)

где  $\gamma$  – плотность волокна ворса, мг/мм<sup>3</sup>;

 $\bar{d}$  и  $\bar{e}$  — средние диаметр и длина ворсинок, мм.

Взвешивание осуществляли на аналитических весах (весы лабораторные квадрантные 4-го класса модели ВЛКТ–500–М).

### 2.4.2. Методы и приборы для механических испытаний

Диаграммы «усилие-удлинение» получали при одноосном растяжении материалов в режиме активного нагружения на универсальной установке INSTRON–1122.

Жёсткость при изгибе определяли двумя методами:

- 1) консольным бесконтактным методом на приборе ПТ–2 в соответствии с методикой для текстильных полотен [93];
- 2) условной жёсткостью на приборе ПЖУ–12М [94], где согнутая кольцом проба материала изгибается под действием сосредоточенной нагрузки. *Драпируемость* определяли дисковым методом A [95].

### 2.4.3. Методы и приборы для испытаний физических свойств

*Воздухопроницаемость* определяли стандартным методом на приборе FF–12/A при перепаде давления 96 Па.

Для измерения в лабораторных условиях координат цветности материалов использован спектрофотоколориметр «Пульсар» [96]. Принцип действия прибора основан на одновременном измерении коэффициентов отражения на двадцати четырех фиксированных длинах волн в видимой области спектра 380-720 нм за одну вспышку импульсной лампы с последующей математической обработкой результатов измерения с помощью программнотехнического комплекса. Диапазон измерения (X + Y + Z) 20-316.

Методы определения характеристик теплозащитных свойств материалов отличаются большим разнообразием. Они зависят от рода поставленной теплотехнической задачи, от способа подвода и отвода теплоты к объектам исследования и ряда других факторов. Выделяются методы регулярного и стационарного режимов. Метод регулярного режима основан на измерении скорости (темпа) охлаждения нагретого до заданной температуры тела, изолированного от окружающей среды испытуемым образцом. Метод стационарного режима основан на определении количества теплоты, необходимого для поддержания постоянной разности температур двух сред, изолированных друг от друга испытуемым образцом [97].

В наших исследованиях измерения теплопроводности проводилось на приборе, изготовленном в Техническом университете г. Дрездена (Германия) (рис. 2.10). Теплопроводность с его помощью определяют в стационарном режиме, путем измерения теплового потока, проходящего через исследуемую пробу.



Рис. 2.10. Внешний вид прибора для определения теплопроводности

Образец располагают между двумя пластинами — холодной (нижней) и теплой (верхней). Температура поверхности пробы определяется термодатчиками. Толщина пробы определяется после установки ее в приборе. Прибор оснащен компьютером, который контролирует теплый и холодный тепловой потоки, температуру поверхности образца со стороны теплой и холодной пластин и температуру воздуха. Измерение начинали по достижении стационарных условий. Длительность подготовительного периода может достигать, в зависимости от пробы, четырех часов.

Коэффициент теплопроводности  $\lambda$  (Вт/м·К) рассчитывали по формуле

$$\lambda = \frac{\mathbf{q} \cdot \delta}{\mathbf{t}_{\mathrm{T}}^{0} - \mathbf{t}_{\mathrm{x}}^{0}} , \qquad (2.7)$$

где  $q = \frac{q_T + q_x}{2}$ ,

 $q_T$  – плотность теплового потока с теплой стороны,  $B_T/M^2$ ;

 ${\bf q}_{x}$  – плотность теплового потока с холодной стороны,  ${\bf B}{\bf r}/{\bf m}^{2}$ ;

 $t_T$  и  $t_x$  — температура поверхности пробы соответственно с теплой и холодной стороны, °C;

 $\sigma$  – толщина пробы, м.

Схема прибора показана на puc.~2.11. Горячая и холодная пластины выполнены из алюминия, имеют размеры  $300 \times 300 \times 36$  мм. Каналы для циркуляции воды в пластинах выполнены в форме плоской спирали, параллельной плоскости пластины. Детали пластин соединены склеиванием и винтами.

Термостат обеспечивает температурный диапазон от 0 °C до 100 °C, рабочую температуру от 20 до 95°C, точность поддержания температуры  $\pm$  0.3 К. Криостат обеспечивает температурный диапазон от -20 до 50°C, точность поддержания температуры  $\pm$  0.02 К.

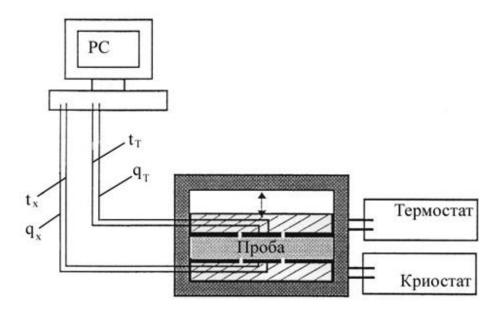



Рис. 2.11. Схема прибора для определения теплопроводности

Схема циркуляции воды для поддержания температуры показана на  $puc.\ 2.12.$  Используется дистиллированная вода. Измерительные пластины имеют размер  $120\times 120$  мм, активную поверхность  $90\times 90$  мм. Применяются термоэлементы NiCr — Ni или Pt 100. Изоляция из пенополистирола имеет толщину 90 мм. При необходимости измерения проводятся в климокамере. Для установки пробы снимают крышку прибора и верхнюю пластину. Боковые части изоляции устанавливаются на нижнюю пластину так, чтобы не было щелей. Затем укладывается проба, толщина которой предварительно измерена.

Для проб, меньших чем  $300 \times 300 \text{ мм}^2$ , необходимо вложить изоляцию, чтобы заполнить воздушные промежутки. Перед испытанием определяли массу пакета и его толщину в свободном состоянии. При установке пробы в измерительную ячейку прибора устанавливали зазор между измерительными пластинами на 3 мм меньше толщины пробы в свободном состоянии.

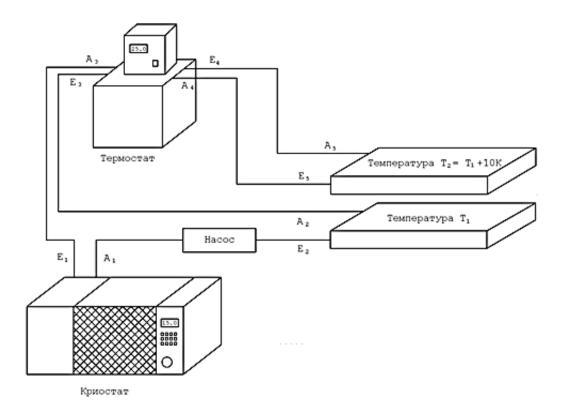



Рис. 2.12. Схема циркуляции воды для поддержания температуры в приборе для измерения теплопроводности:

 $A_1$  – выход насоса криостата с температурой  $T_1$ ;

 $E_2$  – вход холодной пластины с температурой  $T_1$ ;

 $A_2$  – выход холодной пластины с температурой  $T_1$ ;

 $E_3$  – вход холодного змеевика термостата с температурой  $T_2$  – 10 К;  $A_3$  – выход холодного змеевика термостата;

 $E_1$  – возвратный поток в криостат;  $A_4$  – выход насоса термостата;

 $E_5$  – вход теплой пластины с температурой  $T_2 = T_1 + 10 \text{ K}$ ;

 $A_5$  – выход теплой пластины;  $E_4$  – возвратный поток в термостат

После этого в компьютер вводили исходные данные и приступали к термостатированию пробы и дальнейшим измерениям. Диаграмма измерений тепловых потоков и температуры приведена в *приложении*  $\mathcal{I}$ . Величины фиксировались через каждые 5 мин. В *приложениях*  $\mathcal{E}$  и  $\mathcal{K}$  приведены расчетные величины коэффициента теплопроводности и пример протокола испытаний.

### 2.4.4. Методы определения износостойкости флокированных материалов

Исследование стойкости к истиранию текстильных электрофлокированных материалов

Для оценки адгезии пары клей-ворс в материалах одёжного назначения пользуются показателями износостойкости (стойкости ворсового покрова к истиранию) готового флокированного материала. При этом для текстильных

материалов важное значение имеет стойкость к истиранию в мокром виде, а также стойкость к стиркам.

Mетодика исследования устойчивости к истиранию на приборе Bиртестер FF–21

На приборе FF–21 производится истирание относительным смещением друг на друге двух плоских горизонтальных поверхностей при заданной нагрузке, которую можно изменять в пределах от 50 до 2500 гс. Описание прибора приведено в *приложении И*. Прибор имеет три одновременно действующие истирающие головки, которые состоят из верхних зажимных устройств, совершающих движения различного характера и расположенных на общем столе [98]. При проведении испытаний пробные образцы заправляли в нижние головки, а абразив — в верхние. Оценку результатов осуществляли по времени истирания до начала разрушения ворсового покрова. В качестве абразива использовали сукно шинельное серое артикула 6405 [99].

Методика исследования устойчивости к истиранию на приборе UT-3M Исследования проводились в соответствии с методикой [100]. Нагрузка на истирающий орган -3 кгс, давление на единицу площади образца  $-9.7\cdot10^4$  Па. Контроль истирания проводился двумя способами: визуально до появления на образце видимых дефектов, портящих внешний вид или по относительной потере массы ворса при истирании. При испытаниях прибор останавливали через каждые 10 циклов (оборотов) и проверяли состояние ворсовой поверхности. При появлении внешних дефектов отмечали количество циклов или взвешиванием определяли относительную потерю массы ворса.

*Стирку* проводили вручную в соответствии с методикой [101] или в бытовой стиральной машине.

Методика стирки и обработки образцов после стирки

Стирку проводили в бытовой стиральной машине «Сибирь» при следующем режиме:

Образцы полоскали дважды по 2 мин при температуре  $(20 \pm 4)^{\circ}$ С со сменой воды в баке стиральной машины, после этого отжимали в центрифуге в течение одной минуты, затем сушили при комнатной температуре в подвешенном состоянии 12 ч. Гладили образцы утюгом массой 1.2 кг при температуре  $120 \pm 15$  °C без нажима по три движения вперед и назад, сначала с изнаночной, затем с лицевой стороны.

# 2.5. Характеристики промышленного оборудования и вспомогательные методики, использованные в исследованиях

Методика измерения температуры при оплавлении термопластичных порошков. Подплавление порошка проводили под лампой накаливания мощностью 500 Вт. Температуру нагрева определяли с помощью термометра по схеме, показанной на рис. 2.13.

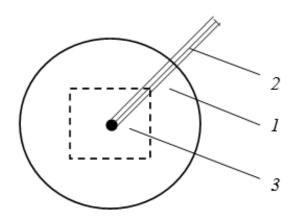



Рис. 2.13. Определение температуры подплавления порошка: 1 — проекция лампы; 2 —термометр; 3 — образец термопереносного материала

Влияние расстояния от нижнего края колбы лампы, укрепленной на штативе, до образца на температуру под лампой показывает *рис.* 2.14.

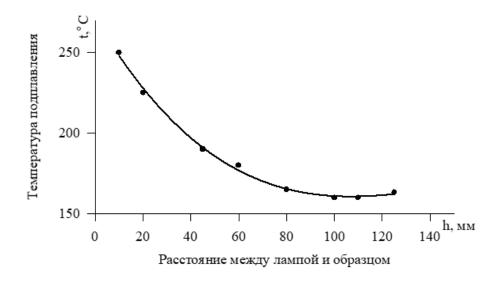



Рис. 2.14. Зависимость температуры от расстояния между лампой и образцом

Характеристики термопрессов, использованных для исследований термопереносных флокированных материалов

Промышленный термопресс ЗАО «Спорт» (С.-Петербург) имеет верхнюю обогреваемую и нижнюю холодную плиты, регулятор температуры и таймер. Технические характеристики термопресса:

| Размер плит пресса, мм                                           |
|------------------------------------------------------------------|
| Пределы регулирования температуры, °С 50÷290                     |
| Точность регулирования температуры, °С 2                         |
| Пределы регулирования времени прессования, с0÷60                 |
| Точность регулирования времени прессования, с1                   |
| Габариты пресса, мм                                              |
| Термопресс фирмы Schenk GmbH Maschinenbau (Германия) представлен |
| на рис. 2.15. Технические характеристики термопресса:            |
| Мощность, кВт2                                                   |
| Напряжение, В220                                                 |
| Масса, кг40                                                      |
| $\Gamma$ абариты, мм670 × 420 × 530                              |
| Давление, кПа0.7                                                 |



Рис. 2.15. Термопресс ТР-М/2 фирмы Schenk GmbH Maschinenbau

*Пабораторный термопресс*, использованный для исследований давления при термопереносе. Технические характеристики лабораторного термопресса:

| Габаритные размеры, мм: длина             | 280              |
|-------------------------------------------|------------------|
| ширина                                    | 330              |
| Высота в закрытом состоянии               | 140              |
| Максимальный печатный формат, мм          | $240 \times 290$ |
| Масса верхней плиты, кг                   |                  |
| Пределы регулирования температуры верхней |                  |
| плиты, °С                                 | 100÷230          |

Температуру верхней плиты регулировали с помощью спирали и ЛАТ-Ра и определяли по термометру. Давление при термопереносе изменяли, увеличивая вес верхней плиты гирями.

Ультразвуковой генератор УЗГ 130.1/22 с пьезокерамическим преобразователем использовался для сваривания пакетов при разработке теплоизоляционных флокированных материалов. Технические данные генератора:

| Потребляемая мощность, Вт                 | 200    |
|-------------------------------------------|--------|
| Частота питающей сети, Гц                 | 50     |
| Пределы плавной регулировки выходной      |        |
| мощности, Вт                              | 50–100 |
| Максимальная частота колебаний сварочного |        |
| инструмента, кГц                          | 22     |
| Угол наклона иглы сварочного инструмента  |        |
| к горизонтали, град                       | 45     |

### Глава 3. ИССЛЕДОВАНИЕ КЛЕЕВЫХ КОМПОЗИЦИЙ ДЛЯ ПРЯМОЙ И ТЕРМОПЕРЕНОСНОЙ ПЕЧАТИ ВОРСОМ

# 3.1. Модификация воднодисперсионных клеевых композиций для улучшения печатно-технических свойств

Важной проблемой при использовании клеев для печатания через шаблоны является обеспечение процесса печатания без забивания ячеек шаблона клеем. Клеевые композиции для электрофлокирования на основе водных полимерных дисперсий представляют собой многокомпонентные системы, включающие различные добавки. Введение дополнительных компонентов может оказывать дестабилизирующее воздействие на латексы, снижая их термодинамическую устойчивость, а следовательно, и устойчивость самой печатной композиции.

Дестабилизация может быть вызвана введением наполнителей в результате выделения в водную среду многовалентных катионов либо из-за перераспределения эмульгатора между полимером и наполнителем. Для латексов, стабилизированных эмульгаторами, способными к гидролизу, коагулирующим фактором является изменение рН. Ослабление стабилизирующего действия адсорбционного слоя из-за его дегидратации происходит при введении в латекс органических жидкостей, смешивающихся с водой. Водорастворимые полимеры или полимеры, содержащие полярные гидратируемые группы, сорбируясь на поверхности латексных частиц, способствуют структурированию системы. В процессе получения клеевого отпечатка связующее продавливают через сетку шаблона с помощью ракли, при этом оно испытывает механические воздействия, в результате которых возможна десорбция эмульгатора с поверхности латексных частиц, что приводит к образованию коагулюма. В течение рабочего цикла сетка шаблона с тонким слоем связующего находится под воздействием атмосферного воздуха, что вызывает испарение влаги с поверхности клея, уменьшение толщины гидратного слоя латексных частиц и, как итог, образования агрегатов, забивающих ячейки сетки.

Результатом дестабилизирующих воздействий на дисперсные системы, которые имеют место в процессе приготовления клеевых композиций и при клеепечатании, является снижение адсорбционной насыщенности поверхности дисперсных частиц. Следовательно, повышение устойчивости рассматриваемых систем возможно за счет повышения механической прочности защитного слоя эмульгатора и увеличения толщины гидратной оболочки дисперсных частиц, создаваемой полярными частями молекул ПАВ. Последнее может достигаться дополнительным введением в состав клеевых композиций ПАВ различной природы, а также гидрофильных низкомолекулярных веществ. Ниже приведены исследования по модификации воднодисперсионных клеёв с целью возможности примененить их для печатания через шаблоны.

# 3.1.1. Модификация клеевых композиций двух- и трёхатомными спиртами

С целью улучшить печатно-технические свойства водного акрилового клея [26] в его состав вводили низколетучие водорастворимые двух- и трехатомные спирты: этиленгликоль, бутиленгликоль и глицерин в количестве 10 % от массы печатной композиции. В *табл. 3.1* представлены рецептуры исследованных композиций.

Клеепечать осуществляли с помощью механической ракли и сетчатого шаблона на лабораторной установке многоцветного флокирования УМФ-2/1. Отпечаток получали за два прохода ракли. При изготовлении шаблона была использована полиамидная сетка № 25 (maбл. 3.1). Временной промежуток между двумя последовательными операциями печатания составлял 80 с. Технологические свойства композиций оценивали по тиражности печати — количеству возможных четких отпечатков полосы шириной 1 мм. Как показали результаты предварительных исследований, только введение глицерина в состав клея позволил значительно (в семь раз) увеличить продолжительность бездефектной печати. При добавлении гликолей наблюдалось снижение вязкости клея, вспенивание при отделении шаблона от основы, резкий запах (при использовании бутиленгликоля).

Таблица 3.1. Состав исследованных клеевых композиций

|                           | Содерж                                                  | ание ингред | иентов в ма | ссовых |  |  |  |
|---------------------------|---------------------------------------------------------|-------------|-------------|--------|--|--|--|
| Ингредиент                | Содержание ингредиентов в массовых частях в композициях |             |             |        |  |  |  |
| • • • •                   | 1                                                       | 2           | 3           | 4      |  |  |  |
| МБМ-3                     | 60                                                      | 60          | 60          | 60     |  |  |  |
| AK-211                    | 40                                                      | 40          | 40          | 40     |  |  |  |
| AK-216                    | 8                                                       | 8           | 8           | 8      |  |  |  |
| ДЭГ–1                     | 8                                                       | 8           | 8           | 8      |  |  |  |
| Гидроокись аммония (10 %) | 4                                                       | 4           | 4           | 4      |  |  |  |
| Антивспениватель БА       | 1                                                       | 1           | 1           | 1      |  |  |  |
| Этиленгликоль             | _                                                       | 12          | _           | _      |  |  |  |
| Бутиленгликоль            | _                                                       | _           | 12          | _      |  |  |  |
| Глицерин                  | _                                                       | _           | _           | 12     |  |  |  |

Для определения оптимального содержания глицерина в составе клеевой композиции изучалось его влияние на технологические свойства печатного состава: скорость пленкообразования, вязкость клея, резкость и тиражность печати, — а также на физико-механические свойства готовых электрофлокированных материалов: стойкость к истиранию в сухом и мокром состояниях и жесткость.

В качестве основы для изготовления образцов выбрано хлопчатобумажное трикотажное полотно поверхностной плотностью  $185 \text{ г/м}^2$ . Технологические режимы: напряженность электрического поля  $E = 4 \cdot 10^5 \text{ В/м}$ , время флокирования t = 30 c, термообработка 10 мин при 90 °C и 5 мин при 140 °C. Образцы получили с использованием вискозного ворса длиной 0.5 мм и линейной плотностью 0.31 текс. Результаты исследований приведены на *рис*. 3.1 и в maбл. 3.2 ...

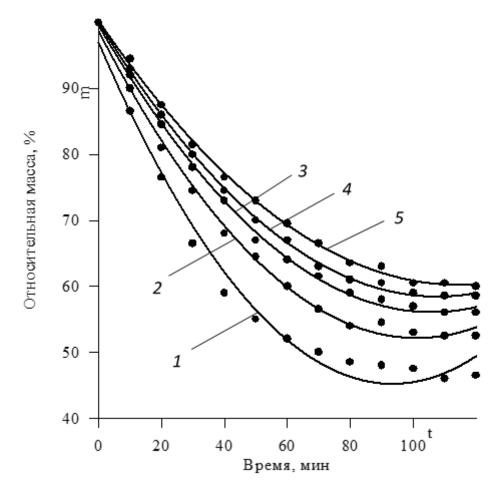



Рис. 3.1. Влияние содержания глицерина на скорость пленкообразования акрилового клея: массовая доля глицерина в клее: 1-0%; 2-3%; 3-5%; 4-7%; 5-9%

Анализ полученных зависимостей указывает на то, что введение в состав клеевой композиции на основе водных акриловых дисперсий глицерина приводит не только к снижению скорости пленкообразования исследуемой системы и, следовательно, к повышению тиражности процесса клеепечати, но и к улучшению стойкости флокированных материалов к истиранию как в сухом, так и в мокром состоянии.

Таблица 3.2. Свойства связующего и электрофлокированного материала

### при различном содержании глицерина в составе клеевой композиции

| Содер          | Печатно-технические свойства свя-<br>зующего |                  |         | Физико-механические войства электрофлокированных материалов |           |              |
|----------------|----------------------------------------------|------------------|---------|-------------------------------------------------------------|-----------|--------------|
| кание          | Дерма от х                                   | , T              |         | Стойкость<br>нию, ц                                         | •         | Услов<br>ная |
| цери-<br>на, % | Вязкость,<br>спз                             | Резкость печати, | 1 /     | cyxoe co-                                                   | мокрое    | жест-        |
|                | $(D = 437 c^{-1})$                           | % отпечатков     | стояние | состоя-                                                     | кость, сН |              |
| _              | 132                                          | 100              | 10      | 630                                                         | 45        | 2.00         |
| 3              | 196                                          | 100              | 15      | 920                                                         | 100       | 2.25         |
| 5              | 239                                          | 100              | 22      | 960                                                         | 100       | 2.25         |
| 7              | 248                                          | 100              | 32      | 1150                                                        | 115       | 2.50         |
| 9              | 240                                          | 100              | 75      | 1200                                                        | 115       | 2.75         |
| 11             | 244                                          | 102              | 96      | 1230                                                        | 130       | 2.75         |
| 13             | 230                                          | 102              |         | 870                                                         | 80        | 2.75         |

Улучшение прочности закрепления ворса является, очевидно, результатом образования химических связей между линейными макромолекулами полимера в присутствии низкомолекулярного соединения: глицерин образует мостик между молекулами плёнкообразующего полимера:

Также повышение устойчивости флокированных материалов к истиранию может быть вызвано увеличением адгезионного взаимодействия между пористым текстильным субстратом и клеем, поскольку введение глицерина в состав печатных композиций способствует увеличению смачивания и пропитывания.

Следует отметить, что данный фактор отрицательно сказывается на жесткости получаемых материалов. Известно, что глицерин и его водные растворы, в противоположность одно- и двухатомным спиртам, обладают заметно выраженной внутренней пространственной структурой, образуемой в результате взаимодействия молекул посредством водородных связей. Поэтому глицерин, не обладая заметной поверхностной активностью, при добавлении в дисперсию равномерно распределяется в ее внутренней фазе, повышая ее вязкость. Аналогичные изменения отмечены и в наших исследованиях.

Таким образом, при введении глицерина в состав печатной композиции до 10 % от ее массы не происходит уменьшения вязкости клея и, следовательно, ухудшения вязкости печати. При этом тиражность процесса клеепечати возрастает в семь раз.

Поскольку наличие глицерина в составе клеевой композиции приводит к увеличению жесткости электрофлокированных материалов, полученных на текстильной основе, то целесообразно указанную композицию использовать для печати на менее пористых бумажных основах. При этом, как показали проведенные исследования, содержание глицерина не должно превышать 10 %, так как в противном случае ухудшается резкость получаемых клеевых отпечатков.

Для производства узорчатых флокированных материалов на бумаге (обоев, открыток, упаковки) с успехом применяются клеи на основе поливинилацетатных гомо- и сополимерных дисперсий, поскольку условия эксплуатации данного вида продукта не предполагают высоких требований к водостойкости ворсового рисунка.

Улучшение печатно-технических свойств рассматриваемых композиций, как и в случае полиакриловых вододисперсионных связующих, возможно, за счет снижения скорости испарения дисперсионной среды (воды) с поверхности клея путем введения в состав композиции гидрофильных низкомолекулярных веществ, например глицерина. За основу взяли разработанную автором клеевую композицию следующего состава (мас. ч.):

| Дисперсия поливинилацетатная ДФ 51/15 В | 100          |
|-----------------------------------------|--------------|
| Метазин                                 | 25           |
| Акрэмос 402                             | 10           |
| Гидроксид аммония (10 %)                | До pH = 9÷10 |

Использование в композиции сшивающего агента (метазина) позволило получить материалы с высокими прочностью закрепления ворса и эксплуатационными характеристиками. Загущение связующего необходимо для достижения требуемой резкости отпечатка. На *рис.* 3.2 представлены зависимости, 100

характеризующие влияние соединений глицерина на технологические свойства и резкость печати, а также на физико-механические свойства электрофлокированных материалов, полученных на бумаге для обоев с использованием вискозного ворса длиной 0.5 мм. Режим сушки: 2–3 мин при температуре 140 °C.

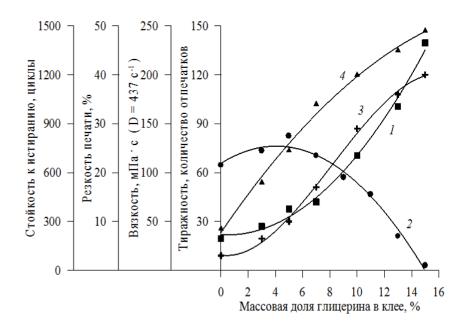



Рис. 3.2. Влияние содержания глицерина на технологические свойства поливинилацетатного клея и эксплуатационные характеристики флокированных материалов: *1* – тиражность; *2* – вязкость; *3* – резкость печати; *4* – стойкость к сухому истиранию

На основе проведенных исследований был получен патент [102] на способ производства флокированных обоев. Клеевая композиция с добавлением глицерина дорабатана в дальнейшем в производственных условиях (см. подразд. 6.3.2).

# 3.1.2. Исследование факторов устойчивости дисперсных систем, стабилизированных эмульгатором смешанного действия

Важным технологическим свойством клеев является их жизнестойкость. Применительно к процессу печатания это означает, что пленкообразование на сетке шаблона не должно происходить в течение 1–3 мин, пока длится технологический перерыв при периодической печати. Исследования, приведённые в подразд. 3.1.1, показали, что введение глицерина повышает устойчивость клеевой композиции к дестабилизирующим воздействиям при клеепечатании. Однако при этом увеличивается смачиваемость клеем гигроскопичной текстильной основы, что увеличивает жесткость флокированного слоя после сушки. Улучшение технологических свойств вододисперсионных клеев возможно также за счет дополнительной адсорбции дисперсными частицами ПАВ различной природы, усиливающей механическую прочность защитного слоя эмульгатора и повышающей степень гидратации последнего. Дополнительное введение стабилизаторов в дисперсию необходимо осуществить с учетом вида применяемой системы и природы защитных сил, действующих в ней.

Для подтверждения теоретических представлений о характере защитных сил, определяющих устойчивость исследуемых акриловых дисперсий, нами исследованы коллоидные свойства рассматриваемых систем — знак заряда дисперсных частиц и устойчивость к воздействию электролитов.

Адсорбированные на поверхности полимерных частиц поверхностно-активные ионы эмульгатора сообщают частицам дисперсной фазы заряд. Применение ПАВ типа С–10 обусловливает наличие отрицательного заряда. Поскольку в настоящее время не существует прямых методов экспериментального определения поверхностного потенциала двойного электрического слоя на поверхности частиц ( $\varphi_0$ ), определяют условную величину — электрокинетический потенциал ( $\xi$ ).  $\xi$ -потенциал вычисляют на основе данных о направлении и скорости электрофоретического переноса частиц дисперсной фазы в неподвижной среде под действием приложенной разности потенциалов [91]. Результаты, полученные в ходе исследований, представлены в *табл. 3.3.* 

Таблица 3.3. Определение знака заряда акриловых дисперсий

| Дисперсия   | Знак заряда на поверхности частиц |
|-------------|-----------------------------------|
| МБМ-3       | Отрицательный                     |
| AK-216      | » »                               |
| Акрэмос–402 | » »                               |

Приведенные данные подтверждают наличие электростатического фактора устойчивости у рассматриваемых дисперсий, что, в свою очередь, обусловливает коагуляцию данных систем при введении в них электролитов.

Согласно теории ДЛФО [104], коагулирующим действием обладает лишь тот ион электролита, заряд которого противоположен заряду коллоидной частицы. Следовательно, дисперсии, стабилизированные эмульгатором С–10, будут коагулировать под воздействием катионов. Для определения порога электролитной коагуляции водных акриловых дисперсий, используемых для приготовления клеев в технологии ворсопечати, изучалась кинетика коагуляции данных систем одно- и двухвалентными катионами [103]. Из правила Дерягина-Ландау следует, что значение порогов коагуляции для одно-, двухи трехвалентных ионов должны относиться как  $1:(1/2)^6:(1/3)^6=1:1/64:1/729$ .

Исследования проводили, используя оптический метод, предполагающий определение оптической плотности 0.01%-го раствора латекса после введения в него электролита. Оптическую плотность регистрировали через каждые 30 с в течение 15 мин с помощью фотоэлектроколориметра КF-77.

Получены зависимости оптической плотности D от времени  $\tau$  после введения электролита при разных его концентрациях. Для определения порога коагуляции по полученным данным построены графики зависимости  $(dD/d\tau)_{\tau\to 0}=f(C_{\text{эл.}})$ . Анализ этих графиков позволил выявить значения порогов коагуляции, приведённые в maбn. 3.4. Соотношения порогов быстрой коагуляции электролитами с одно- и двухвалентными катионами  $C_{\kappa 1}/C_{\kappa 2}$  получилось близким к четырем, т. е. наблюдалось несовпадение экспериментальных данных с теоретическими. Необходимо отметить, что на опыте часто наблюдаются значительные отклонения от правила Шульце—Гарди.

Таблица 3.4. Значения порога быстрой коагуляции полиакриловых дисперсий

| Марка<br>диспер- | Порог быстрой коагуляции электролитами |                                     | Отношания поро                     |
|------------------|----------------------------------------|-------------------------------------|------------------------------------|
|                  | с одновалентными                       | с двухвалентными                    | Отношение поро- гов быстрой коагу- |
| сии              | катионами (NaCl) $C_{\kappa l}$ ,      | катионами                           | ляции, $C_{\kappa 1}/C_{\kappa 2}$ |
| СИИ              | ммоль/л                                | $(BaCl_2)$ $C_{\kappa 2}$ , ммоль/л | $\mathcal{L}_{K1}$                 |
| МБМ-3            | 3.7                                    | 0.900                               | 4.11                               |
| AK-216           | 1.1                                    | 0.265                               | 4.16                               |

Согласно С. С. Воюцкому [105], на результаты определения порогов коагуляции могут влиять малейшие, порой даже трудно учитываемые воздействия. Одной из причин расхождения может являться ионный обмен, в особенности, когда порог коагуляции низок. И. Ф. Ефремов и О. Г. Усьяров объясняют отклонение фактически найденной концентрации электролита от концентрации, определяемой путем расчетов, взаимодействием частиц во вторичной потенциальной яме, что ведет к образованию сравнительно малопрочных флокул [106]. Кроме того, как уже отмечалось выше, для систем, содержащих слабо заряженные частицы, характерна специфическая адсорбция ионов добавляемого электролита, обусловливающая нейтрализационный механизм коагуляции. При данном механизме коагуляция происходит не в результате сжатия двойного электрического слоя, а вследствие снижения электрического потенциала самих частиц. Для подобных систем коагулирующее действие электролитов пропорционально валентности противоионов в степени меньше шести [41]. Не исключено, что и у полиакриловых дисперсий, стабилизированных эмульгатором смешанного действия типа С–10, может иметь место специфическая адсорбция ионов электролита.

Исследование коллоидных свойств полиакриловых дисперсий свидетельствует о высокой устойчивости данных систем к действию электролитов,

особенно пленкообразователя МБМ—3. Это дает основание предположить, что основными факторами, определяющими агрегативную устойчивость рассматриваемых дисперсий, являются структурно-механический и адсорбционносольватный. Следовательно, для повышения устойчивости полиакриловых дисперсий к дестабилизирующим воздействиям процесса клеепечати возможно дополнительно использовать ПАВ различной природы: анион-, катионактивные, неионогенные.

# 3.1.3. Влияние ПАВ различной природы на технологические свойства адгезива и эксплуатационные характеристики электрофлокированных материалов

Для проведения исследований выбраны различные виды ПАВ (см. *табл. 2.7*). Стабилизирующую способность ПАВ оценивали по увеличению тиражности процесса клеепечати. ПАВ в количестве 0.25; 0.5; 0.75; 1.0; 1.25; 1.5 мас. ч. вводили в композицию следующего состава (мас. ч.):

| Пленкообразователь МБМ-3 | 100 |
|--------------------------|-----|
| Загуститель Акрэмос-402  | 10  |
| Сшивающий агент ДЭГ-1    | 8   |
| Гидроксид аммония 25%-й  | 1.8 |
| Антивспениватель БА      | 0.5 |

Увеличение содержания ПАВ свыше 1.5 мас. ч. на 100 мас. ч. полимерной основы, как показали предварительные эксперименты, нецелесообразно, поскольку это приводит к ухудшению физико-механических свойств клеевых пленок. Как видно из *рис.* 3.3, дополнительное введение ПАВ в клеевые композиции на основе полимерных дисперсий позволяет повысить тиражность процесса клеепечати.

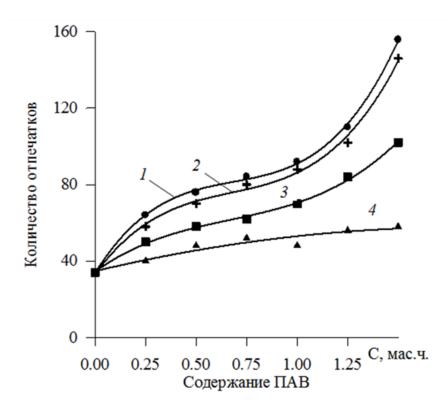



Рис. 3.3. Влияние введения ПАВ на тиражность процесса клеепечати:  $I - O\Pi - 10$ ; 2 - неонол АФ 9 - 10; 3 - С-10; 4 - триамон

При этом наиболее эффективным является введение неионогенных ПАВ ОП–10 и неонола АФ 9–10. Полученные результаты в полной мере согласуются с теоретическими представлениями о свойствах неионогенных ПАВ. Можно предположить, что увеличение количества клеевых отпечатков происходит в первую очередь в результате снижения испарения влаги с поверхности клеевого слоя, покрывающего сетку шаблона. Последнее возможно за счет повышения толщины гидратного слоя дисперсных частиц. Отличительной особенностью молекул НПАВ является высокая степень гидрофильности оксиэтилированной цепи, причина которой кроется в присоединении молекул воды к эфирному кислороду водородными связями. Возникающие комплексы могут включать до двадцати молекул воды на один атом кислорода [105].

С целью определить оптимальное содержание ПАВ в составе печатной композиции изготовили образцы флокированных материалов с использованием клея, включающего дополнительно различные виды ПАВ. Образцы со сплошным нанесением вискозного ворса длиной 0.5 мм и линейной плотностью 0.31 текс получали на лабораторной установке УМФ–1. В качестве основы использовали смесовую ткань.

Зависимости, представленные на *рис. 3.4* показывают, что введение рассматриваемых ПАВ в состав клея до 1 мас. ч. не снижают устойчивости к истиранию образцов флокированных материалов в сухом состоянии. В то же

время наблюдается снижение прочностных показателей материала в мокром состоянии, за исключением образцов, полученных с использованием клея, содержащего катионактивное ПАВ триамон. Ухудшение эксплуатационных свойств готовых материалов, вызванное введением в печатный состав НПАВ, возможно как за счет снижения адгезионного взаимодействия между клеем и ворсом, так и за счет снижения когезионной прочности самих клеевых пленок. С целью выявить причины описанных процессов, были проведены исследования по изучению влияния введения ПАВ на физико-механические характеристики полимерных пленок, полученных на основе исследуемых клеевых композиций. Пленки отливали на фторопластовой пластине с последующей термообработкой в соответствии с режимами изготовления флокированных материалов: 10 мин при 90 °С и 5 мин при 140 °С. Результаты исследований представлены на рис. 3.5.

Сравнительный анализ зависимостей, характеризующих прочностные свойства полимерных пленок и образцов флокированных материалов, позволяет сделать вывод о том, что изменение указанных свойств является результатом химических взаимодействий, происходящих в процессе формирования структуры клеевых пленок.

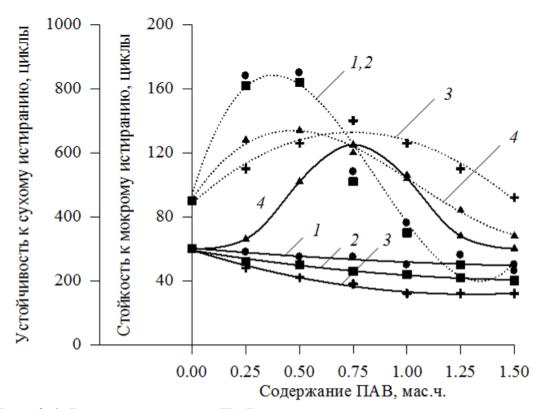
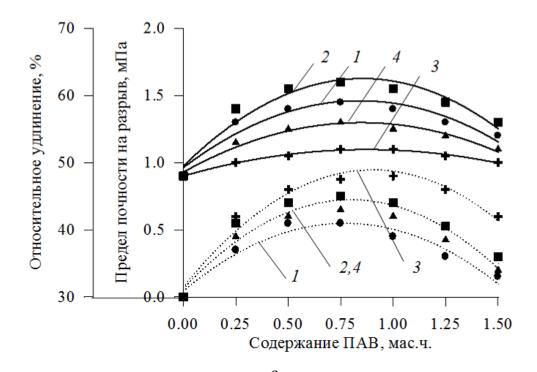




Рис. 3.4. Влияние введения ПАВ в клей на устойчивость к истиранию в сухом и мокром состояниях образцов электрофлокированных материалов:

 $I - O\Pi - 10$ ; 2 — неонол  $A\Phi 9 - 10$ ; 3 - C - 10; 4 — триамон



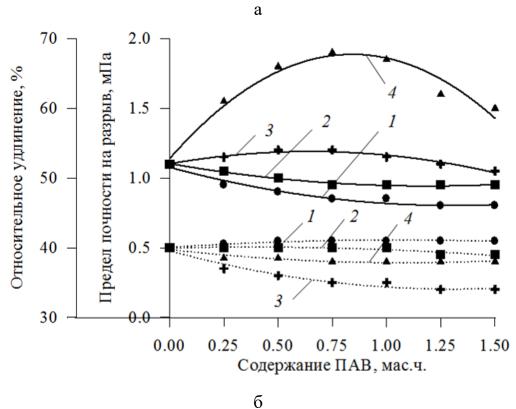



Рис. 3.5. Влияние введения ПАВ на физико-механические свойства клеевых пленок в сухом (a) и мокром ( $\delta$ ) состояниях:

— предел прочности на разрыв;

107

— относительное удлинение;  $1- \Pi = 0$ ; 2- неонол АФ 9–10; 3- С–10; 4- триамон

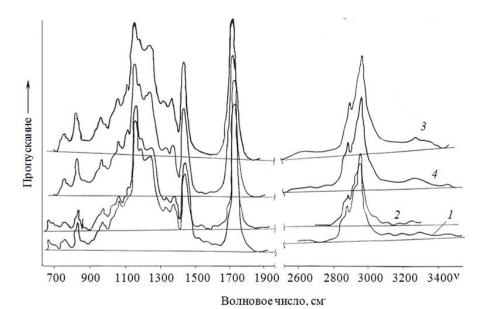
### 3.1.4. Исследование структурно-химических взаимодействий в клеевых композициях, содержащих дополнительно ПАВ

Для подтверждения теоретических представлений о механизме структурно-химических превращений в клеевых композициях, содержащих дополнительно различные виды ПАВ, использован метод инфракрасной спектроскопии. Перечень объектов исследования приведён в подразд. 2.3.2.

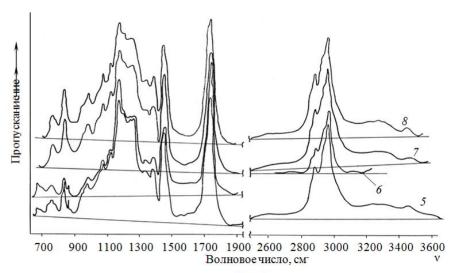
Исследования взаимодействий компонентов в акриловом клее методом ИК-спектроскопии проводились автором совместно с Е. А. Кравецкой и Н. В. Пла- тоновой [107]. Клей представляет собой многокомпонентную смесь, в которую кроме пленкообразователя входят загуститель, сшивающий агент, а также ПАВ различного химического состава. Каждый из компонентов имеет сложный спектр поглощения. Кроме того, отнесение полос для подобных соединений имеет мало аналогов в научно-технической литературе. В ходе исследований предполагалось, во-первых, установить химизм реакций, протекающих в клеевой композиции при введении ПАВ и, во-вторых, определить связи, обуславливающие упрочнение клеевых пленок. В *табл. 3.5* приводится отнесение полос в полученных ИК-спектрах.

Таблица 3.5. Отнесение полос поглощения в ИК-спектрах исследуемых пленок [108, 109]

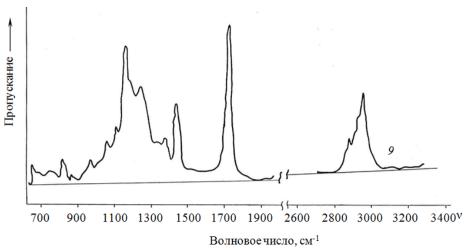
| Волновое число, см-1 | Группа              | Тип колебаний                |
|----------------------|---------------------|------------------------------|
| 2960                 | -CH <sub>3</sub>    | Валентные асимметричные      |
| 1740                 | >C = O              | Валентные                    |
| 1260                 | >C-O-C∈             | Валентные асимметричные      |
| 1200                 | (в сложных эфирах)  |                              |
|                      | >C-C∈               | Валентные                    |
| 1200(1)              | ≡CH                 | Деф ормационные ножничные    |
| 1200                 | – OH                | Деф ормационные ножничные    |
|                      | (в кислотах)        |                              |
|                      | >C-O-C ∈            | Валентные симметричные       |
| 1170                 | <b>&gt;</b> C − C ∈ | Валентные                    |
|                      | ≡CH                 | Деф ормационные ножничные    |
|                      | Колебательный       |                              |
|                      | фрагмент n-бутила   |                              |
| 1120 <sup>(2)</sup>  | + >C-C∈             | Валентные (сегменты зигзага) |
|                      | + >C-O-C∈           | Валентные асимметричные      |
|                      | (в простых эфирах)  |                              |
| 1070 <sup>(2)</sup>  | > C − C ∈           | Валентные                    |
| 1070                 | ≡ CH                | Деф ормационные ножничные    |
|                      | $CH_3 - O$          | Деф ормационные ножничные    |
| 980 <sup>(2)</sup>   | (во фрагменте мета- |                              |
|                      | криловой кислоты)   |                              |
| (2)                  | - CH <sub>2</sub> - | Деформационные маятниковые   |
| 840 <sup>(2)</sup>   | колебательный       |                              |
|                      | момент n-бутила     |                              |


Примечания: 1. Вклад валентных симметричных колебаний сложноэфирных групп ( C – O – C )

2. Конформационно-чувствительные полосы.


> <

Записанные ИК-спектры представлены на *рис.* 3.6. Сравнительный анализ показал, что новые полосы поглощения в ИК-спектрах образцов, содержащих ПАВ, отсутствуют. Это может быть вызвано малой концентрацией введенных ПАВ. С целью выявить изменения, происходящие в исследуемых объектах, производился обсчет записанных спектров.


Для уменьшения погрешности анализа, связанной с изменением абсолютной интенсивности полос поглощения, и исключения из расчетов значения толщины поглощающего слоя воспользовались отношением интенсивности i-й полосы поглощения к интенсивности полосы «внутреннего стандарта», выраженных в оптических плотностях ( $D_i / D_{\text{вн.ст}}$ ). В качестве полосы «внутреннего стандарта» выбрана полоса 2880 см<sup>-1</sup>, связанная с колебаниями  $v_s(\text{CH}_2)$ ,  $v_s(\text{CH}_3)$ , v(CH), то есть тех функциональных групп, которые не расходуются в исследуемых процессах и не являются конформационно-чувствительными.



лист 1



лист 2



лист 3

a

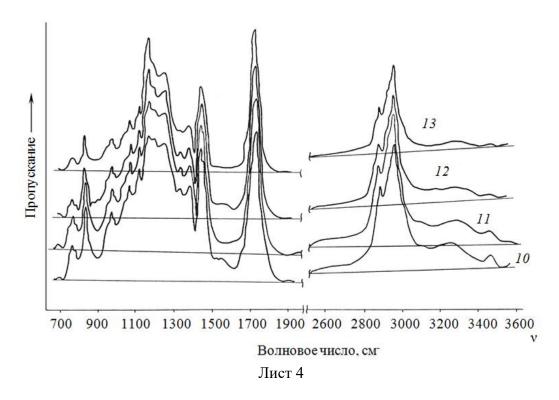



Рис. 3.6. ИК-спектры полимерных плёнок (a–e)

Значения относительных оптических плотностей ряда полос поглощения спектров исследуемых образцов пленок ( $D_i/D_{2880}$ ) приведены в *табл. при-ложения К*. Анализ представленных результатов позволил сделать следующие выводы.

1. При термообработке пленки на основе МБМ-3 возможен незначительный разрыв сложноэфирных групп, о чем свидетельствует уменьшение интенсивности полос 1200 см $^{-1}$  (вклад симметричных валентных колебаний  $v_{\rm S}({\rm COC})$ ), 1260 см $^{-1}$  (валентные асимметричные колебания  $v_{\rm a}({\rm COC})$ ), и 1170 см $^{-1}$  (валентные симметричные колебания  $v_{\rm S}({\rm COC})$ ). Одновременное уменьшение интенсивности полосы поглощения 1120 см $^{-1}$  (колебательный фрагмент нормального бутила) дает основание полагать, что наиболее слабым звеном являются сложноэфирные группы бутилакрилата.

Таким образом, в процессе термообработки пленки сополимера метилакрилата, бутилакрилата и метакриловой кислоты (62 : 35 : 3) возможно протекание следующих реакций [110], что согласуется с результатами исследований в работе [43].

2. При термообработке пленки из смеси МБМ-3 с загустителем «Акрэмос-402» происходят процессы, аналогичные указанным выше.

3. Сравнение спектров образцов 5 и 6, содержащих КПАВ триамон, указывает на увеличение в результате термообработки интенсивности полос поглощения, связанных с колебаниями сложноэфирных групп или их вкладов (1260, 1200, 1170 см<sup>-1</sup>), то есть происходит формирование таких групп. Повидимому, наблюдаемые изменения являются результатом взаимодействия спиртовых групп триамона с карбоксильными группами метакриловой кислоты. Данная реакция протекает по следующей схеме:

По увеличению интенсивности полосы  $1120 \text{ см}^{-1}$  можно предположить формирование и простых эфирных связей. Изменение интенсивности конформационно-чувствительных полос (1120,  $1170 \text{ см}^{-1}$ ) свидетельствуют о конформационных преобразованиях в полимерной цепи или ее фрагментах. Результатом окислительных процессов, происходящих в полимерных пленках, является существенное возрастание интенсивности полосы  $1740 \text{ см}^{-1}$  (валентные колебания v(C=O)), т.е. формирование карбоксильных групп [111].

- 4. В результате термообработки образца 7, содержащего НПАВ неонол АФ 9–10, происходит незначительное уменьшение интенсивности полос 1260, 1200 и 1170 см $^{-1}$ , что дает основание предположить расход связей в сложноэфирных группах. Одновременное уменьшение интенсивности полос поглощения, в которые вносят вклад фрагменты концевых групп нормального бутила (1120, 840 см $^{-1}$ ) свидетельствует о том, что разрушение сложноэфирных связей происходит в бутилакрилатных звеньях. Характер наблюдаемых изменений аналогичен процессам, происходящим при термообработке образца 3, не содержащего НПАВ неонол АФ 9–10. Поэтому можно сделать вывод о том, что молекулы данного ПАВ в реакциях сшивок не участвуют.
- 5. Сравнение спектра образца 9, содержащего оба исследуемые ПАВ, со спектрами образцов 5, 7 и 6, 8 показало, что фиксируемые процессы аналогичны наблюдаемым при термообработке образца с добавкой триамона. Это подтверждает высказанное выше предположение об активном химическом взаимодействии данного ПАВ с компонентами клеевой композиции.
- 6. Сравнительный анализ спектров образцов 10-11, 12-13 с 3-4 и 7-8 указывает на то, что введение в состав клеевой композиции раствора аммиака не оказывает влияния на механизм химических взаимодействий в исследуемых объектах. Об этом свидетельствует исчезновение после термообработки образцов 10 и 12 полосы поглощения в области 1560 см<sup>-1</sup> (деформационные колебания  $\delta$  (N–H),  $\delta$  (NH<sub>3</sub><sup>+</sup>).

Таким образом, результаты ИК-спектроскопии свидетельствуют о том, что введение в состав клеевых композиций на основе полимерных акриловых дисперсий КПАВ триамон, который имеет в своем составе реакционноспособные группы, приводит к образованию дополнительных химических связей между линейными макромолекулами, что увеличивает когезионную прочность полимерной пленки. В отличие от триамона НПАВ неонол АФ 9–10 является химически инертным. Возрастание прочности пленок в сухом состоянии при введении этого ПАВ в клей происходит, по-видимому, за счет более глубокого процесса коалесценции латексных частиц в процессе пленкообразования.

### 3.1.5. Выбор оптимального содержания смеси ПАВ в клеевой композиции

Исследование возможности использования ПАВ для улучшения технологических свойств воднодисперсионных клеев показало, что наиболее эффективным является использование неионогенных ПАВ, молекулы которых,
адсорбируясь на поверхности дисперсных частиц, образуют мощный гидратный слой, повышающий устойчивость композиции. В то же время дополнительное введение в состав клея НПАВ отрицательно сказывается на износостойкости готовых флокированых материалов. Использование катионоактивного ПАВ не позволяет повысить тиражность процесса клеепечати, но, в отличие от неионогенных ПАВ, триамон является химически активным веществом и способствует улучшению показателей физико-механических свойств
флокированных материалов. В результате предварительных исследований установлено, что введение в состав клеевых композиций смеси указанных ПАВ
позволяет, наряду с улучшением печатно-технических свойств клеев, получать материалы с высокими эксплуатационными характеристиками.

С целью найти оптимальное соотношение выбранных ПАВ проведены исследования свойств связующего с различным содержанием компонентов смеси ПАВ, а также свойств готовых материалов, полученных на основе указанных композиций.

На рис. 3.7 представлены зависимости изменения скорости пленкообразования полиакрилового клея при введении в него неонола АФ 9–10 и триамона в количестве 0–1.5 масс. ч. на 100 масс. ч. полимерной основы. Кривые получены на основании экспериментальных данных о кинетике испарения влаги с поверхности связующего. Аппороксимацию и расчет значений производной dm<sub>0</sub>/dr проводили на компьютере. Анализ полученной поверхности свидетельствует о том, что содержание триамона в исследуемой композиции не должно превышать 0.5 мас. ч. В противном случае происходит резкое возрастание скорости пленкообразования, что будет отрицательно сказываться на печатных свойствах клея. Действие триамона обусловлено, по-видимому, электростатическим взаимодействием его молекул с поверхностью отрицательно заряженных частиц акрилового сополимера. Введение избытка КПАВ в латекс, стабилизированный эмульгатором типа С–10, может привести к образованию нерастворимых в воде соединений и тем самым к потере активности обоих эмульгаторов, то есть началу коагуляции [43].

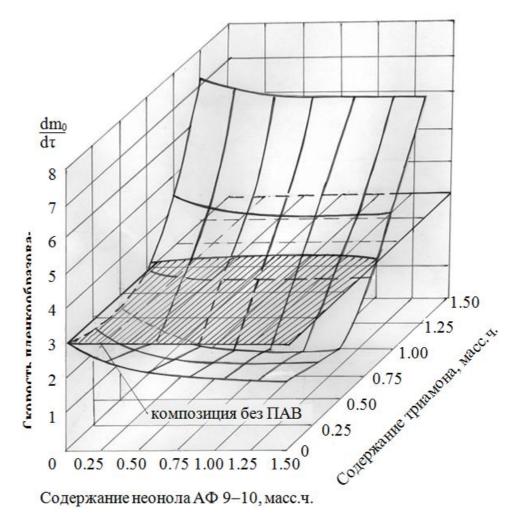



Рис. 3.7. Влияние смеси ПАВ на скорость пленкообразования: — область допустимого содержания ПАВ

При введении триамона в количестве, не превышающем 0,5 мас. ч., стабильность системы не ухудшается. Об этом свидетельствуют результаты исследований устойчивости к действию электролитов 0.01%-х растворов полиакриловых дисперсий, стабилизированных С–10 и содержащих дополнительно неионогенное и катионактивное ПАВ в количестве 0,5 мас. ч. (рис. 3.8). Можно предположить, что небольшое содержание триамона в исследуемых дисперсиях и композициях на их основе способствует созданию смешанного адсорбционного межфазного слоя на поверхности частиц сополимера, что увеличивает стабильность системы [112].

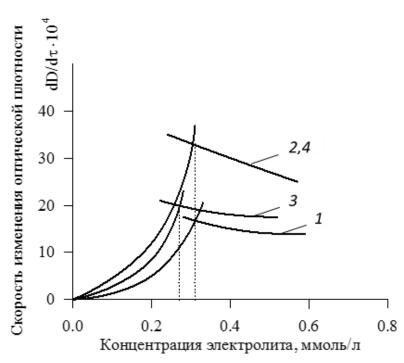



Рис. 3.8. Зависимость  $(dD/d\tau)_{\tau\to 0}$  акриловых дисперсий от концентрации электролита с двухвалентными катионами (BaCl<sub>2</sub>): I — Акрэмос 402; 2 — Акрэмос 402 + неонол АФ 9–10; 3 — Акрэмос 402 + триамон; 4 — Акрэмос 402 + неонол АФ 9–10 + триамон

Это подтверждается изменением поверхностного натяжения дисперсии МБМ—3 при введении в нее смеси ПАВ (*puc. 3.9*): изменение поверхностного натяжения происходит за счет абсорбции молекул или ионов растворенного вещества на поверхности латексных частиц.

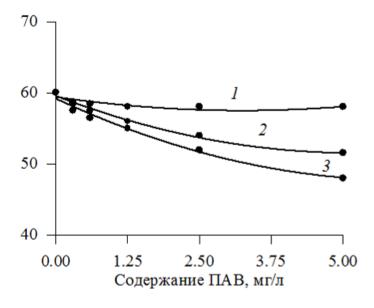



Рис. 3.9. Влияние введения ПАВ на величину поверхностного натяжения дисперсии МБМ-3: 1 – неонол АФ 9-10; 2 – триамон; 3 – неонол АФ 9-10 + триамон (1 : 1)

Полученные изотермы поверхностного натяжения свидетельствуют о том, что в данном случае имеет место синергический характер взаимодействия дополнительно вводимых ПАВ с эмульгатором, присутствующим в дисперсии, так как суммарное поверхностное натяжение ниже поверхностного натяжения каждого из компонентов.

Исследованы эксплуатационные свойства флокированных материалов, изготовленных с использованием клеевых композиций, содержащих смесь катионоактивного и неионогенного ПАВ. Образцы получали на лабораторной установке. Основу — хлопчатобумажное трикотажное полотно — флокировали вискозным ворсом длиной 0.5 мм и линейной плотностью 0.31 текс.

Использование в составе композиций триамона позволяет повысить устойчивость готовых материалов к сухому и мокрому истиранию. Наибольшее улучшение прочностных свойств наблюдается при содержании неонола АФ 9–10 и триамона по 0.5 мас. ч. на 100 мас. ч. полимерной основы.

Оценку жесткости осуществляли методом консоли с помощью прибора ПТ-2. Следует отметить, что использование ПАВ для улучшения печатнотехнических свойств клеев не приводит, в отличие от введения низкомолекулярных добавок, к увеличению жесткости флокированных материалов. Небольшое увеличение исследуемого показателя наблюдается при введении в композицию триамона в количестве, превышающем 0.5 мас. ч. на 100 мас. ч полимерной основы. Последнее обусловлено, по-видимому, высокими смачивающими свойствами данного ПАВ. Введение триамона в состав клеевой композиции усиливает ее пропитывающие свойства и, как результат, жесткость готовых материалов. Следовательно, для сохранения эластичности флокированных материалов целесообразно вводить в состав клея не более 0.5 мас. ч. триамона. На рис. 3.10 представлена область оптимального содержания компонентов смеси ПАВ, полученная пересечением областей допустимого содержания ПАВ, определяемых значениями комплекса показателей свойств клеевой композиции и флокированного материала.

Введение в состав печатных композиций различных добавок не должно ухудшать качества рисунка, наносимого на основу. Показателем, характеризующим четкость контуров клеевого рисунка, является резкость печати, которую определяют как отношение площади отпечатка на основе к площади печатной полосы на шаблоне, выраженное в процентах. Как показали исследования, введение в состав клея смеси  $\Pi AB - 0.5$  мас. ч. триамона и 0.5 мас. ч. неонола  $\Lambda \Phi$  9–10 на 100 мас. ч. полимерной основы – не приводит к ухудшению резкости клеевого отпечатка, что, вероятно, обусловлено реологическими свойствами используемой композиции. Исследование реологических свойств композиций, включающей смесь  $\Pi AB$ , проводили с использованием ротационного вискозиметра «Реотест 2» в интервале скоростей сдвига, соответствующих процессу печати плоскими или ротационными шаблонами [26].



Рис. 3.10. Область значений оптимального содержания ПАВ в клеевой композиции (заштрихована):

```
_____ область пленкообразования; _____ устойчивость к мокрому истиранию; ____ жёсткость нию;
```

Полученные в логарифмических координатах кривые течения показывают (*puc. 3.11*), что значение наименьшей  $\eta_3^{\text{мин}}$  и наибольшей  $\eta_3^0$  ньютоновских вязкостей не достигаются.

Это свидетельствует о том, что в исследованном интервале D, а значит, и в условиях печати, исследуемая клеевая композиция остается устойчивой. Также представленные кривые указывают на увеличение вязкости клеевой композиции при дополнительном введении в нее смеси ПАВ. Причиной происходящего процесса является, по-видимому, образование на поверхности дисперсных частиц адсорбционных слоев неионогенного ПАВ, имеющих гелеобразную структуру и обладающих повышенной вязкостью [113]. После достижения адсорбционной насыщенности защитных слоев возможно образование мицелл в водной фазе дисперсной системы, что способствует усилению эффекта структурной вязкости.

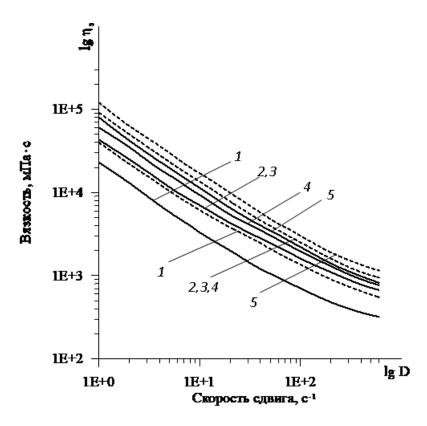



Рис. 3.11. Кривые течения акриловых клеев: 1- сразу после приготовления клея; 2- через 2 часа; 3- через 4 часа;

4 – через 8 часов; 5 – через 24 часа

——— – композиция без ПАВ; ----- – композиция с содержанием 0.5 г неонола АФ 9–10 и 0.5 г триамона на 100 г полимерной основы

Результатом проведённых исследований стала разработка устойчивой к коагуляции в условиях печатания воднодисперсионной акриловой клеевой композиции, содержащей дополнительно смесь поверхностно-активных веществ, следующего состава [114] в массовых частях в пересчёте на сухое вещество:

| МБМ-3               | 33                    |
|---------------------|-----------------------|
| AK-216              | 1,6                   |
| Антивспениватель БА | 0,7                   |
| ДЭГ-1               | 6,5                   |
| Неонол АФ 9-10      | 0,4                   |
| Триамон             | 0,4                   |
| NH <sub>4</sub> OH  | До $pH = 8 \div 10$ . |

В развитие описанных выше достижений по совершенствованию печатно-технических свойств клеевых композиций из российских компонентов для производства флокированных материалов с локальным нанесением ворса при участии автора совместно со специалистами ПО «Оргстекло» (г. Дзержинск) проводилась разработка специализированных акриловых дисперсий, которые можно было бы использовать без применения в качестве сшивающего агента эпоксидной смолы [27]. В результате был получен патент [115] на способ получения электрофлокированных материалов, в котором основу клеевой композиции составляют Акрэмос 702 (плёнкообразователь) и Акрэмос 404 (загуститель), способные к самосшиванию при термообработке и обеспечивающие требуемую вязкость при печатании по текстильной основе.

Альтернативой применению эпоксидной смолы для усиления адгезионных свойств клеевых плёнок является также введение в клеевую композицию мелкодисперсного термопластичного порошка, например, полиамидного [116].

## 3.2. Исследование пенных латексных клеев и полученных на их основе электрофлокированных материалов

Одним из путей улучшения потребительских свойств электрофлокированных материалов для одежды является применение клеевых композиций, способных образовывать пористую плёнку. Такие клеи способны увеличить воздухопроницаемость готовых материалов, а возможно, и улучшить их жёскостные характеристики. В данном разделе исследованы свойства пенных клеевых композиций, пригодных для получения электрофлокированных материалов с локальным нанесением ворса.

#### 3.2.1. Оптимизация параметров вспенивания

За основу состава при разработке пенной клеевой композиции взят водный акриловый клей, содержащий смесь плёнкообразователей МБМ-3 и АК-211, а также сшивающий агент ДЭГ-1. Этот клей хорошо себя зарекомендовал в качестве основного при нанесении флокированных рисунков методом термопереноса ворса [117]. Исследованы параметры пенообразования основного латекса МБМ-3: скорость и время вспенивания до 400 с. С увеличением времени вспенивания при скорости до 11.67 с-1 кратность пены монотонно растет до 9–11. При частоте вращения ротора гомогенизатора  $\omega = 13.33 \, \, \mathrm{c}^{\text{-1}}$  после 180 с вспенивания кратность пены стабилизируется. Дальнейшее увеличение скорости вращения ротора ухудшает вспенивание. Рис. 3.12 показывает кинетику вспенивания латексов-пленкообразователей клеевой композиции при  $\omega =$ 11.67 с<sup>-1</sup>. В связи с пониженной пенообразующей способностью АК-211 соотношение между пленкообразователями изменено в пользу МБМ-3. Можно выделить две стадии процесса: пенообразование и (после прекращения перемешивания) самостабилизация. Первая стадия характеризуется обильным пенообразованием, усиленной десорбцией частиц ПАВ с поверхности глобул и переходом их в водную фазу. После некоторого времени перемешивания, характерного для каждого латекса и зависящего от его состава, появляется вязкое течение вспениваемой композиции, тогда начинается вторая стадия – стабилизация.

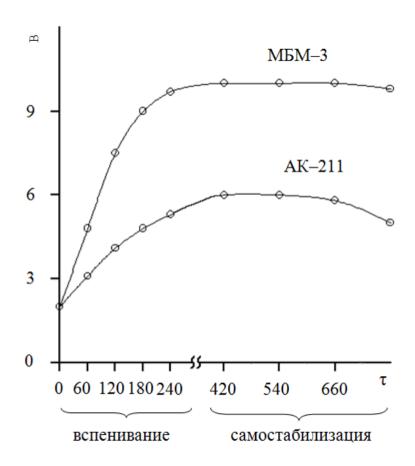
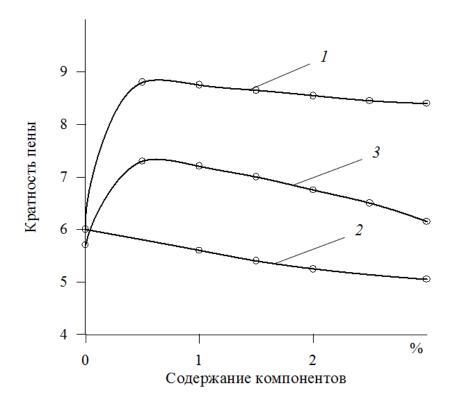


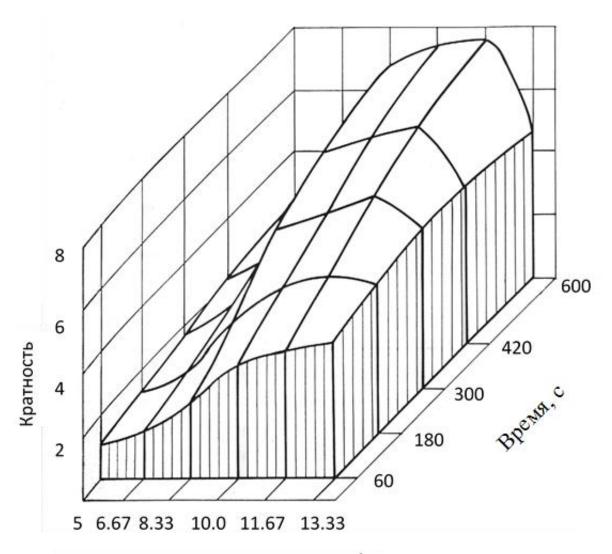

Рис. 3.12. Кинетика вспенивания латексов

Такое свойство латексов позволяет уменьшить количество дополнительно вводимого стабилизатора пены или вообще не вводить дополнительно пенообразователь.

Клеевую композицию вспенивали при частоте вращения ротора  $11 \text{ c}^{-1}$ . Клей обычного состава, содержащий отвердитель и щелочной агент  $NH_4OH$ , не вспенивается (maбл. 3.6,  $\kappa omnosuųus 1$ ). При введении кальцинированной соды  $Na_2CO_3$  происходит коагуляция пенного клея. Использование в качестве щелочного агента гидрокарбоната натрия  $NaHCO_3$  (maбл. 3.6,  $\kappa omnosuųus 2$ ) позволило повысить устойчивость и дисперсность пенного клея. Однако введение порошкообразного  $NaHCO_3$  перед вспениванием приводит к понижению кратности пены в сравнении со вспениванием смеси MEM-3, AK-216 и  $\mathcal{J}\mathcal{P}I-1$  (кратность 6.9), что можно объяснить повышением плотности серума, в который вводится соль. Если же вводить  $NaHCO_3$  в частично вспененную композицию, можно добиться повышения стабильности пены и ее кратности. Вспенивание на второй стадии осуществляли при частоте вращения ротора гомогенизатора 13.3 с $^{-1}$ . С целью повысить устойчивость пены в качестве загусти-

телей на первой стадии вспенивания, когда еще не введен щелочной агент, применяли поливиниловый спирт (ПВС) (5%-й водный раствор), полиакриламид (ПАА) и карбоксиметилцеллюлозу (КМЦ) (5%-й раствор). Влияние концентрации загустителя ПВС на свойства пены показывает рис. 3.13. ПВС обладает более сильным стабилизирующим действием по сравнению с КМЦ и ПАА. Это объясняется, вероятно, тем, что его молекулы имеют полярные группы, способные образовывать водородные связи с молекулами воды.





Рис. 3.13. Влияние гидрокарбоната натрия и ПВС на кратность пены. Клеевые композиции (*табл. 3.8*) с введением:

$$1 - \text{NaHCO}_3$$
;  $2 - \Pi BC$  (5%-го);  $3 - \text{NaHCO}_3 + 1$  %  $\Pi BC$  (5%-го)

Из проведенных экспериментов следует необходимость двухстадийного вспенивания: сначала при относительно небольшой скорости, а затем, после введения щелочного агента, при высокой скорости до требуемых параметров пены. Вначале изучено влияние скорости и времени вращения ротора гомогенизатора на вспениваемость латексной композиции (на примере композиции  $N_2$  4, maбn. 3.6) на первой стадии. Как показывает puc. 3.14 с увеличением скорости ротора миксера и времени вспенивания кратность пены увеличивается. Однако при скоростях более 11.7  $c^{-1}$  вспениваемость уменьшается и наблюдается частичная коагуляция латекса. Оптимальным является перемешивание при скоростях вращения  $10 \div 11.7$   $c^{-1}$ .

Таблица 3.6. Рецептуры клеевых композиций для вспенивания

|                          |       |        | Компоне | нты клее | вой комі | тозиции  | , мас.ч. |         |                    | Последовательность соединения                                                              | Свойства            | пены                                 |
|--------------------------|-------|--------|---------|----------|----------|----------|----------|---------|--------------------|--------------------------------------------------------------------------------------------|---------------------|--------------------------------------|
| Номер<br>компо-<br>зиции | MEM-3 | AK-211 | AK-216  | ДЭГ-1    | НО∤НИ    | IIBC 5 % | КМЦ 5 %  | ПАА 4 % | NaHCO <sub>3</sub> | компонентов                                                                                | крат-<br>ность      | плот-<br>ность,<br>кг/м <sup>3</sup> |
| 1                        | 100   | 40     | 8       | 8        | 2.5      | _        | _        | _       | _                  | M6M-3+AK-211+AK-216+                                                                       | 1.0                 | 1050                                 |
| 1                        | 100   | 10     | O       | O        | 2.3      |          |          |         |                    | +ДЭГ−1+NH <sub>4</sub> OH, вспенивание                                                     | (не вспени          | вается)                              |
| 2                        | 100   | 40     | 8       | 8        | _        | _        | _        | _       | 3.0                | МБМ-3+АК-211+АК-216+<br>+ДЭГ-1+NаНСО <sub>3</sub> , вспенивание                            | 4.7                 | 223                                  |
| 3                        | 100   | 40     | 8       | 8        | _        | _        | _        | _       | 3.0                | МБМ–3+АК–211+АК–216+<br>+ДЭГ–1, I вспенивание<br>+NaHCO <sub>3</sub> , II вспенивание      | 8.5                 | 123                                  |
| 4                        | 100   | 40     | 8       | 8        | _        | 30       | _        | _       | _                  | МБМ-3+АК-211+АК-216+<br>+ПВС+ДЭГ-1, вспенивание                                            | 5.6                 | 188                                  |
| 5                        | 100   | 40     | 8       | 8        | _        | _        | 30       | _       | _                  | МБМ-3+АК-211+АК-216+<br>+КМЦ+ДЭГ-1, вспенивание                                            | При вспен           |                                      |
| 6                        | 100   | 40     | 8       | 8        | _        | _        | _        | 1.5     | _                  | МБМ-3+АК-211+АК-216+<br>+ПАА+ДЭГ-1, вспенивание                                            | более 5 ми<br>гулир |                                      |
| 7                        | 100   | 40     | 8       | 8        | _        | _        | 30       | _       | 3.0                | МБМ-3+АК-211+АК-216+<br>+КМЦ+ДЭГ-1, І вспенивание+<br>+NаНСО <sub>3</sub> , ІІ вспенивание | 4.4                 | 239                                  |
| 8                        | 100   | 40     | 8       | 8        | _        | _        | _        | 1.5     | 3.0                | МБМ-3+АК-211+АК-216+<br>+ПАА+ДЭГ-1, I вспенивание+<br>+NaHCO <sub>3</sub> , II вспенивание | 5.8                 | 181                                  |
| 9                        | 100   | 40     | 8       | 8        | _        | 30       | _        | _       | 3.0                | МБМ-3+АК-211+АК-216+<br>+ПВС+ДЭГ-1, I вспенивание+<br>+NаНСО <sub>3</sub> , II вспенивание | 6.7                 | 157                                  |



Скорость ротора гомогенизатора, с-1

Рис. 3.14. Влияние условий вспенивания на кратность пены

Для выбора режима второй стадии вспенивания проведен эксперимент по рототабельному плану Бокса [118]. В *табл. 3.7* приведены выбранные факторы и уровни их варьирования. Матрица планирования, рабочая матрица и экспериментальные данные приведены в *табл. 3.8*. После обработки данных на компьютере получена адекватная математическая модель второго порядка [119]–[121]:

 $Y = 6.783 + 0.570X_1 + 0.328X_2 + 0.566X_3 - 0.486X_1X_2 - 0.15X_1X_3 - 0.288X_2^2.$ 

Таблица 3.8. Матрица планирования и рабочая матрица

| Номер | Матри  | ицы планиро | вания  | Pa    | бочие матри | ЦЫ    |                  | Кратнос        | ть пены |                 |
|-------|--------|-------------|--------|-------|-------------|-------|------------------|----------------|---------|-----------------|
| опыта | $X_1$  | $X_2$       | $X_3$  | $X_1$ | $X_2$       | $X_3$ | $\mathbf{Y}_{1}$ | $\mathbf{Y}_2$ | $Y_3$   | Y <sub>cp</sub> |
| 1     | _      | _           | _      | 13.33 | 180         | 4.0   | 4.4              | 4.0            | 4.5     | 4.3             |
| 2     | +      | _           | _      | 16.67 | 180         | 4.0   | 6.0              | 6.2            | 6.1     | 6.1             |
| 3     |        | +           | _      | 13.33 | 420         | 4.0   | 4.8              | 5.1            | 5.1     | 5.0             |
| 4     | +      | +           | _      | 16.67 | 420         | 4.0   | 6.8              | 7.0            | 6.9     | 6.9             |
| 5     |        | _           | +      | 13.33 | 180         | 6.0   | 6.6              | 6.2            | 6.1     | 6.3             |
| 6     | +      | _           | +      | 16.67 | 180         | 6.0   | 7.0              | 6.8            | 6.6     | 6.8             |
| 7     |        | +           | +      | 13.33 | 420         | 6.0   | 6.3              | 6.8            | 6.4     | 6.5             |
| 8     | +      | +           | +      | 16.67 | 420         | 6.0   | 7.3              | 7.6            | 7.3     | 7.4             |
| 9     | +1.682 | 0           | 0      | 17.83 | 300         | 5.0   | 6.1              | 6.3            | 6.2     | 6.2             |
| 10    | -1.682 | 0           | 0      | 12.17 | 300         | 5.0   | 4.4              | 4.7            | 4.7     | 4.6             |
| 11    | 0      | +1.682      | 0      | 15.00 | 500         | 5.0   | 6.8              | 7.0            | 7.2     | 7.0             |
| 12    | 0      | -1.682      | 0      | 15.00 | 100         | 5.0   | 5.5              | 6.0            | 5.6     | 5.7             |
| 13    | 0      | 0           | +1.682 | 15.00 | 300         | 6.7   | 7.5              | 7.6            | 7.6     | 7.7             |
| 14    | 0      | 0           | -1.682 | 15.00 | 300         | 3.3   | 6.2              | 5.8            | 5.7     | 5.9             |
| 15    | 0      | 0           | 0      | 15.00 | 300         | 5.0   | 6.9              | 7.0            | 6.5     | 6.8             |
| 16    | 0      | 0           | 0      | 15.00 | 300         | 5.0   | 7.1              | 6.7            | 6.6     | 6.8             |
| 17    | 0      | 0           | 0      | 15.00 | 300         | 5.0   | 7.0              | 6.8            | 6.9     | 6.9             |
| 18    | 0      | 0           | 0      | 15.00 | 300         | 5.0   | 6.6              | 6.9            | 6.6     | 6.7             |
| 19    | 0      | 0           | 0      | 15.00 | 300         | 5.0   | 6.7              | 6.7            | 6.4     | 6.6             |
| 20    | 0      | 0           | 0      | 15.00 | 300         | 5.0   | 7.2              | 6.8            | 6.7     | 6.9             |

Таблица 3.7. Выбор факторов и уровней их варьирования

|                   | Обозна-        |        | Уровни | и варьир | ования |        | Интер-   |
|-------------------|----------------|--------|--------|----------|--------|--------|----------|
| Фактор            | чение          |        |        |          |        |        | вал      |
| Фактор            | фактора        | -1.682 | -1     | 0        | +1     | +1.682 | варьиро- |
|                   |                |        |        |          |        |        | вания    |
| Скорость ротора   |                |        |        |          |        |        |          |
| гомогенизатора,   |                |        |        |          |        |        |          |
| $c^{-1}$          | $\mathbf{X}_1$ | 12.17  | 13.33  | 15.00    | 16.67  | 17.83  | 1.67     |
| Время вспенива-   |                |        |        |          |        |        |          |
| ния, с            | $\mathbf{X}_2$ | 100    | 180    | 300      | 420    | 500    | 120      |
| Кратность пены    |                |        |        |          |        |        |          |
| после первой ста- |                |        |        |          |        |        |          |
| дии вспенивания   | $X_3$          | 3.3    | 4.0    | 5.0      | 6.0    | 6.7    | 1.0      |

Наибольшее влияние на кратность пены (параметр оптимизации) оказывает скорость ротора гомогенизатора  $(X_1)$  и кратность пены после первой стадии вспенивания  $(X_3)$ . Анализ коэффициентов при парных взаимодействиях показывает, что весьма существенным является эффект совместного влияния скорости и времени вспенивания. Наличие отрицательного коэффициента при квадрате переменной ( $X_2$ , время вспенивания) показывает, что для нее существует оптимальное значение. Интерпретировали результаты эксперимента, изучая поверхности отклика с помощью двухмерных сечений. Для этого проводилось каноническое преобразование уравнения регрессии, которое заключается в переносе осей координат в новый S – центр геометрической поверхности, соответствующей функции отклика, и повороте старых осей координат  $(x_i, x_i)$  до совмещения с главными осями  $(X_i, X_i)$  соответствующей геометрической фигуры [122]. Для переноса начала координат в точку S уравнение регрессии дифференцируют по каждой из независимых переменных и приравнивают частные производные нулю. Решая систему полученных уравнений, находят координаты нового центра в старых осях координат ( $x_{is}$ ;  $x_{is}$ ). Подставляя указанные значения в уравнение регрессии, определяют величину критерия оптимизации в точке  $S(Y_s)$ , после чего рассчитывают угол поворота α осей координат в точке S. Далее определяют коэффициенты уравнения регрессии в канонической форме и получают двухмерные сечения поверхности отклика, характеризующие изменения кратности пены в зависимости от технологических параметров ее получения.

Анализ графических зависимостей показал, что увеличение скорости ротора гомогенизатора в области поиска приводит к увеличению кратности пены. Продолжительность вспенивания более 400 с нежелательна, так как при такой длительности вспенивания происходит опадение пены (рис. 3.15). Вспенивание при использовании пены после первой стадии с кратностью 6.5—7.0 не дает значительного увеличения.

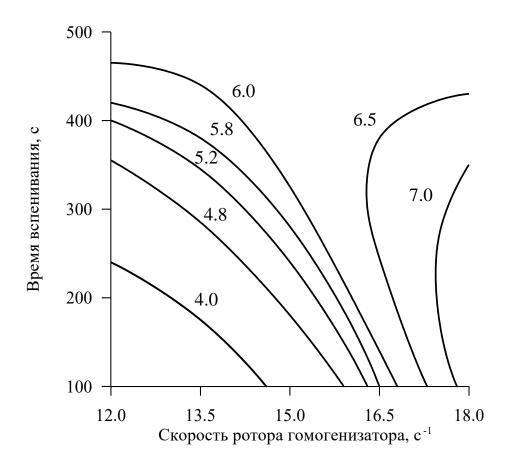



Рис. 3.15. Зависимость кратности пены на второй стадии вспенивания от технологических параметров процесса

### 3.2.2. Влияние состава и свойств пенного клея на свойства флокированного материала

При использовании пенного клея рассматривается вопрос влияния его свойств на воздухопроницаемость, жесткость, стойкость к истиранию электрофлокированных материалов. Эти свойства имеют наибольшее значение для одежных полотен. Исследования проводили на полиэфирной электрофлокированной ткани 6 (см. *табл. 2.11*) со сплошным нанесением вискозного ворса (длина 0.6 мм; линейная плотность 0.31 текс), обработанного в соответствии с работой [123].

На воздухопроницаемость электрофлокированной ткани наибольшее влияние оказывает пористость клеевой пленки, наличие незамкнутой системы лабиринтообразных пор. Увеличение вязкости клеевой композиции при введении NaHCO<sub>3</sub> и стабилизаторов пены (ПВС, КМЦ, ПАА) приводит к увеличению плотности пены и снижению воздухопроницаемости материалов (*puc. 3.15, 3.16*).

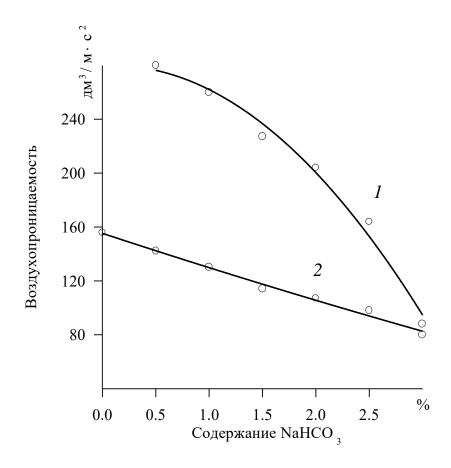



Рис. 3.16. Влияние гидрокарбоната натрия на воздухопроницаемость электрофлокированного материала с использованием клеевых композиций № 3 (1) и № 9 (2) по *табл. 3.6* 

Проведенные исследования показали, что на свойства электрофлокированных материалов, получаемых с использованием пенных латексных клеев, оказывает влияние совместное действие большого числа факторов (состав клеевой композиции, плотность и стабильность пены и др.).

Пенные латексные клеи без дополнительного введения стабилизаторов пены (ПВС, КМЦ, ПАА) практически непригодны для получения электрофлокированных материалов с точки зрения их износостойкости. Это объясняется тем, что даже при относительно высокой кратности получаемых пен (до 8) они оказываются нестабильными и частично разрушатся как до нанесения, так и при нанесении ворса. Поэтому стойкость к истиранию таких флокированных покрытий не превышает 500 циклов в сухом состоянии. Наиболее высокие показатели стойкости к истиранию отмечены у электрофлокированных материалов, полученных при применении клеевых композиций с 5%-м ПВС в количестве 1–1.5% сухого вещества от массы клея. Кроме того, введение стабилизаторов повышает плотность пенной латексной композиции, что увеличивает количество наносимого клея и повышает жесткость материалов.

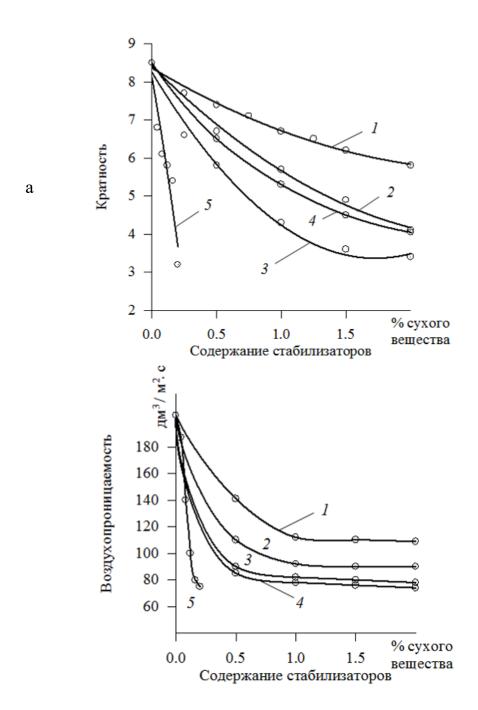



Рис. 3.17. Влияние стабилизаторов пены на пенообразование клеевой композиции и воздухопроницаемость полученного электрофлокированного материала. Клеевая композиция № 3 (по *табл. 3.6*) с введением:  $1 - \Pi BC$  (5%-го);  $2 - \Pi BC$  (10%-го);  $3 - KM \coprod$  (5%-й);  $4 - KM \coprod$  (10%-й);  $5 - \Pi AA$ 

Задача оптимизации состава пенного клея решалась для условия, когда каждой из выбранных целей (стойкость к истиранию, воздухопроницаемость, жесткость) соответствовал свой локальный критерий оптимизации. Вначале найдены экстремальные значения каждого локального критерия при отсутствии ограничений на остальные, что дало возможность определить границы

поиска. Затем, на основе опроса экспертов определили весовые коэффициенты  $\lambda_i$ , характеризующие значимость критериев оптимизации. В результате получили следующие значения весовых коэффициентов (*табл. 3.9*).

Таблица 3.9. Весовые коэффициенты критериев оптимизации

| Вид флокированного  | Стойкость к ис-     | Воздухопрони-         |                      |  |
|---------------------|---------------------|-----------------------|----------------------|--|
| материала           | тиранию $\lambda_1$ | Жесткость $\lambda_2$ | цаемость $\lambda_3$ |  |
| Со сплошным нанесе- | 0.25                | 0.35                  | 0.4                  |  |
| нием ворса          | 0.23                | 0.55                  | 0.7                  |  |
| С ворсовым рисунком | 0.6                 | 0.3                   | 0.1                  |  |

Далее составили функционал качества: 
$$Y = \sum_{i=1}^{n} \lambda_i (X - X_i)^2$$
,

где X – фактор оптимизации,

 $X_{\rm i}$  — значение фактора, соответствующее оптимальному значению i-го критерия оптимизации,

n — количество критериев оптимизации.

Оптимальные значения факторов x, соответствующие минимальному значению функционала качества Y представлены в maбл. 3.10. На данный состав получено авторское свидетельство [124].

Таблица 3.10. Оптимальный состав пенного латексного клея

|                                                   | Оптимальные значения, мас. ч. |                   |  |  |  |  |
|---------------------------------------------------|-------------------------------|-------------------|--|--|--|--|
| Ингредиенты                                       | для сплошного                 | для печати ворсом |  |  |  |  |
|                                                   | флокирования                  |                   |  |  |  |  |
| МБМ-3, мас. ч.                                    | 90–95                         | 80–85             |  |  |  |  |
| АК-211, мас. ч.                                   | 45–48                         | 40–42             |  |  |  |  |
| АК-216, мас. ч.                                   | 6.0–7.0                       | 8.0–9.0           |  |  |  |  |
| ДЭГ-1, мас. ч.                                    | 6.5–7.0                       | 9.0–9.5           |  |  |  |  |
| ПВС (5%-й), процент сухого вещества от массы клея | 0.7-0.85                      | 0.95–1.25         |  |  |  |  |
| NaHCO <sub>3</sub> , процент от массы клея        | 0.75-1.0                      | 1.25–1.5          |  |  |  |  |

### 3.2.3. Оптимизация технологических режимов производства электрофлокированных материалов со вспененным клеем

Помимо состава вспененного клея и условий его получения на свойства материалов оказывают влияние также условия его нанесения и сушки, вид текстильной основы. На *рис.* 3.18 представлены зависимости расхода клея и ворса и связанной с ними стойкости ворсового покрова к истиранию от плотности пены. Клей наносили через сетчатый шаблон, привес клея регулировали числом проходов ракли.

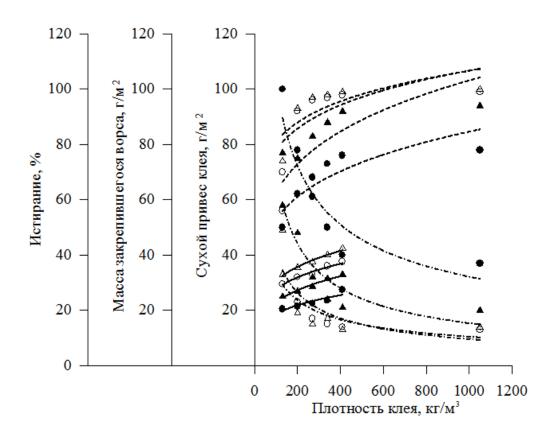



Рис. 3.18. Влияние плотности пенного клея и количества проходов ракли на привес клея и ворса на материале, а также на истирание: количество проходов ракли: • -1; • -2;  $\circ -3$ ;  $\Delta -4$ 

Стойкость к истиранию определяли на приборе ИТ–3М при нагрузке 19.6 Н после 100 циклов как долю (в процентах) потери ворса по отношению к поверхностной плотности закрепившегося ворса. При анализе представленных зависимостей возникает вопрос, какую комбинацию плотности пены и толщины нанесения клея следует выбрать, чтобы достичь лучшего закрепления ворса. Необходимо отметить, что слишком малая плотность пены неблагоприятна, а также, что при правильно выбранных параметрах с меньшим расходом клея можно получить лучшее закрепление ворса.

Проведенные автором совместно с Г. М. Андросовой исследования показали [125], что слишком сильное вспенивание и малая толщина клеевого слоя позволяют получить электрофлокированные материалы с высокой воздухопроницаемостью и низкой жесткостью, однако приводят к резкому ухудшению износостойкости, что сводит на нет все указанные преимущества. Для исследованного клея оптимальная плотность лежит в интервале 180–220 кг/м³, для нанесения требуется три прохода ракли. Дальнейшее увеличение плотности и толщины клеевого слоя приводит к существенному увеличению жесткости и уменьшению воздухопроницаемости, не оказывая при этом существенного влияния на прочность закрепления ворса. Для получения пены плотностью 180-200 кг/м<sup>3</sup> (или кратностью 4.8-5.8) целесообразно применять следующий режим:

Скорость ротора миксера, с<sup>-1</sup>......14–16

Кратность пены после первой стадии вспенивания......3-4

Выбор режимов сушки и термофиксации проводился с помощью рототабельного плана Бокса. В *табл. 3.11* приведены выбранные на основе предварительного эксперимента факторы и уровни их варьирования.

Таблица 3.11. Факторы оптимизации и уровни их варьирования

|                        | Обозначе- | Обозначе- Уровни варьирования |     |     |     |     |          |
|------------------------|-----------|-------------------------------|-----|-----|-----|-----|----------|
| Фактор                 | ние фак-  | -2                            | -1  | 0   | +1  | +2  | варьиро- |
|                        | торов     | -2                            | -1  | U   | +1  | +2  | вания    |
| Температура термофик-  |           |                               |     |     |     |     |          |
| сации, °С              | $X_1$     | 130                           | 135 | 140 | 145 | 150 | 5        |
| Температура сушки, °С  | $X_2$     | 80                            | 90  | 100 | 110 | 120 | 10       |
| Время термофиксации, с | $X_3$     | 60                            | 150 | 240 | 330 | 420 | 90       |
| Время сушки, с         | $X_4$     | 120                           | 240 | 360 | 480 | 600 | 120      |

В качестве параметров оптимизации приняты:

 $Y_1$  – стойкость к истиранию (циклы);

 $Y_2$  – воздухопроницаемость (дм<sup>3</sup>/м<sup>2</sup>·с);

 $Y_3$  – жесткость (H).

Матрица планирования эксперимента, рабочая матрица и результаты эксперимента приведены в *табл. 3.12*. После компьютерной обработки экспериментальных данных получены адекватные математические модели второго порядка.

Таблица 3.12. Матрица планирования эксперимента и рабочая матрица

| Номер<br>опыта | Матрица планирования |   |   | Pa | ьбочая м | иатриц | Эксперименталь-<br>ные значения |     |     |     |      |
|----------------|----------------------|---|---|----|----------|--------|---------------------------------|-----|-----|-----|------|
| 1              | _                    | _ | _ | _  | 135      | 90     | 150                             | 240 | 560 | 109 | 2.45 |
| 2              | +                    | _ | _ | _  | 145      | 90     | 150                             | 240 | 650 | 96  | 2.34 |
| 3              | _                    | + | _ | _  | 135      | 110    | 150                             | 240 | 580 | 104 | 2.44 |
| 4              | +                    | + | _ | _  | 145      | 110    | 150                             | 240 | 660 | 93  | 2.30 |
| 5              | _                    | _ | + | _  | 135      | 90     | 330                             | 240 | 620 | 107 | 2.35 |
| 6              | +                    | _ | + | _  | 145      | 90     | 330                             | 240 | 690 | 91  | 2.30 |
| 7              | _                    | + | + | _  | 135      | 110    | 330                             | 240 | 630 | 101 | 2.37 |
| 8              | +                    | + | + | _  | 145      | 110    | 330                             | 240 | 690 | 89  | 2.30 |
| 9              | _                    | _ | _ | +  | 135      | 90     | 150                             | 480 | 620 | 111 | 2.38 |
| 10             | +                    | _ | _ | +  | 145      | 90     | 150                             | 480 | 700 | 98  | 2.36 |
| 11             | _                    | + | _ | +  | 135      | 110    | 150                             | 480 | 600 | 103 | 2.44 |
| 12             | +                    | + | _ | +  | 145      | 110    | 150                             | 480 | 680 | 91  | 2.40 |

| Номер<br>опыта | Матр | ица пла | нирова | ания | Рабочая матрица |     |     |     | Эксперименталь-<br>ные значения |     |      |  |
|----------------|------|---------|--------|------|-----------------|-----|-----|-----|---------------------------------|-----|------|--|
| 13             | _    | _       | +      | +    | 135             | 90  | 150 | 480 | 690                             | 109 | 2.33 |  |
| 14             | +    | _       | +      | +    | 145             | 90  | 330 | 480 | 740                             | 103 | 2.35 |  |
| 15             | _    | +       | +      | +    | 135             | 110 | 330 | 480 | 670                             | 101 | 2.44 |  |
| 16             | +    | +       | +      | +    | 145             | 110 | 330 | 480 | 693                             | 87  | 2.42 |  |
| 17             | +2   | 0       | 0      | 0    | 150             | 100 | 240 | 360 | 680                             | 85  | 2.40 |  |
| 18             | -2   | 0       | 0      | 0    | 130             | 100 | 240 | 360 | 520                             | 113 | 2.57 |  |
| 19             | 0    | -2      | 0      | 0    | 140             | 120 | 240 | 360 | 660                             | 90  | 2.32 |  |
| 20             | 0    | +2      | 0      | 0    | 140             | 80  | 240 | 360 | 720                             | 100 | 2.20 |  |
| 21             | 0    | 0       | +2     | 0    | 140             | 100 | 420 | 360 | 660                             | 92  | 2.31 |  |
| 22             | 0    | 0       | -2     | 0    | 140             | 100 | 60  | 360 | 540                             | 100 | 2.45 |  |
| 23             | 0    | 0       | 0      | +2   | 140             | 100 | 240 | 600 | 720                             | 98  | 2.36 |  |
| 24             | 0    | 0       | 0      | -2   | 140             | 100 | 240 | 120 | 650                             | 90  | 2.36 |  |
| 25             | 0    | 0       | 0      | 0    | 140             | 100 | 240 | 360 | 720                             | 96  | 2.26 |  |
| 26             | 0    | 0       | 0      | 0    | 140             | 100 | 140 | 360 | 713                             | 98  | 2.28 |  |
| 27             | 0    | 0       | 0      | 0    | 140             | 100 | 240 | 360 | 717                             | 97  | 2.26 |  |
| 28             | 0    | 0       | 0      | 0    | 140             | 100 | 240 | 360 | 727                             | 94  | 2.24 |  |
| 29             | 0    | 0       | 0      | 0    | 140             | 100 | 240 | 360 | 723                             | 96  | 2.25 |  |
| 30             | 0    | 0       | 0      | 0    | 140             | 100 | 240 | 360 | 713                             | 95  | 2.27 |  |
| 31             | 0    | 0       | 0      | 0    | 140             | 100 | 240 | 360 | 717                             | 96  | 2.26 |  |

Для стойкости к истиранию:

$$\begin{split} Y_1 &= 718.53 + 35.56 \ X_1 - 7.76 \ X_2 + 25.56 \ X_3 + 18.89 \ X_4 - 27.82 \ X_1 X_2 - \\ &- 5.32 \ X_1 X_3 - 27.82 \ X_1 X_4 - 6.57 \ X_2 X_3 - 7.92 \ X_3 X_4 - 4.18 \ X_1^{\ 2} - 9.17 \ X_3^{\ 2}. \end{split}$$

Для воздухопроницаемости:

$$Y_2 = 96 - 6.37 X_1 - 3.12 X_2 - 1.37 X_3 + 1.24 X_4 + 1.34 X_1 X_2 - 1.44 X_3^2$$
.

Для жесткости:

$$\begin{split} Y_3 &= 2.26 - 0.032 \; X_1 + 0.02 \; X_2 - 0.022 \; X_3 - 0.011 \; X_4 + 0.57 \; X_1 X_2 + \\ &+ 0.03 \; X_1 X_4 + 0.025 \; X_2 X_3 - 0.007 \; X_2 X_4 + 0.012 \; X_3 X_4 + 0.019 \; X_2^{\; 2} + \\ &+ 0.019 \; X_3^{\; 2} + 0.011 \; X_4^{\; 2}. \end{split}$$

Изучение полученных уравнений проводили с помощью двухмерных сечений поверхностей отклика. Анализ графических зависимостей дал следуюшее:

- увеличение температуры термофиксации приводит к улучшению стойкости к истиранию, уменьшению воздухопроницаемости и увеличению жесткости;
- с увеличением времени термофиксации до 330 с стойкость к истиранию увеличивается. Дальнейшее повышение времени термофиксации не дает

существенных результатов. Максимальная воздухопроницаемость наблюдается при времени термофиксации 150–240 с, а минимальная жесткость – при 240 с;

– с увеличением времени сушки увеличивается стойкость к истиранию, воздухопроницаемость и жесткость.

При решении компромиссной задачи использовали графический метод решения, основанный на том, что оптимум находят визуально путем сопоставления графиков, которые характеризуют совмещенные двухмерные сечения нескольких поверхностей отклика (для различных критериев оптимизации).

Примеры таких совмещенных двухмерных сечений приведены на puc. 3.19 и 3.20.

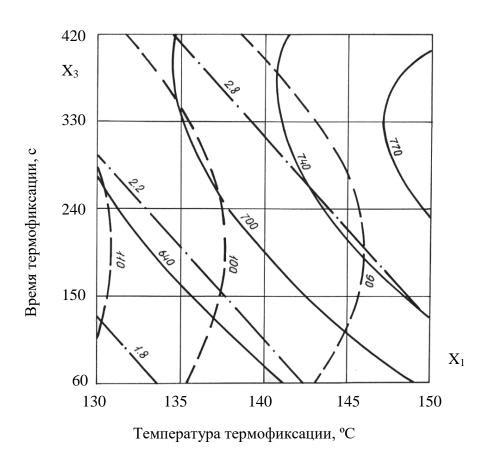


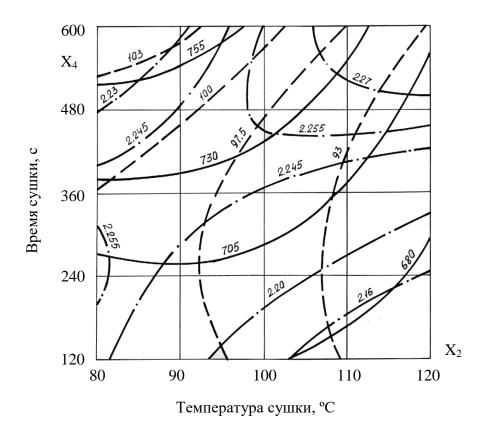

Рис. 3.19. Зависимость свойств электрофлокированного материала от температуры и времени термофиксации:

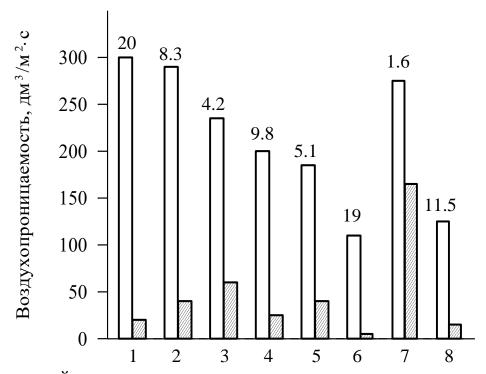
— стойкость к истиранию, циклы; — — воздухопроницаемость, дм<sup>3</sup>/м<sup>2</sup>·с; — жесткость, сН

На основе анализа графических зависимостей и экспериментальных дынных видно, что оптимальными условиями сушки и термофиксации являются:

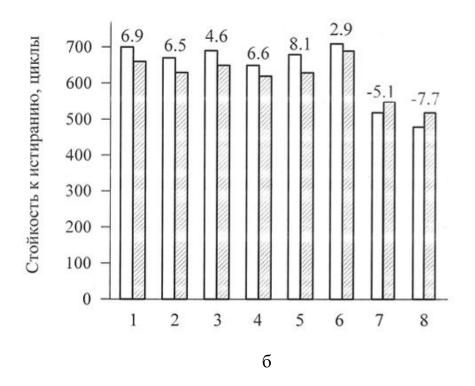
| Температура сушки, °С         | 90  |
|-------------------------------|-----|
| Время сушки, с                | 420 |
| Температура термофиксации, °С | 140 |
| Время термофиксации, с        | 180 |

Полученные данные показывают, что использование пенного латексного клея по сравнению с непенным позволяет сократить время сушки и термофиксации на 3 и 2 минуты соответственно, что дает сокращение общего времени термообработки на треть и соответственно снижает энергозатраты.





Рис. 3.20. Зависимость свойств электрофлокированного материала от температуры и времени сушки:

——— стойкость к истиранию, циклы; воздухопроницаемость, дм<sup>3</sup>/ м<sup>2</sup>·с; жесткость, сН


Чтобы в полной мере оценить преимущества, которые дает пенный клей, наработана серия электрофлокированных материалов на различных основах — тканях и трикотажных полотнах, отличающихся волокнистым составом и структурой ( $maбn.\ 2.10,\ 2.11$ ). При этом использовали два вида клея: непенный акриловый клей и разработанную пенную латексную композицию плотностью  $200\ {\rm kr/m}^3$  следующего состава:

| AK-211                                      | 40  |
|---------------------------------------------|-----|
| ПВС (5%-й), % сухого вещества от массы клея | 0.8 |
| ДЭГ-1, мас. ч                               | 7.0 |
| NaHCO <sub>3</sub> , %                      | 1.0 |

Результаты сравнительных испытаний (рис. 3.21 а, б, в) показали, что, в зависимости от материала основы применение пенного клея позволяет улучшить основные свойства электрофлокированных материалов: увеличить воздухопроницаемость до 20 раз, снизить жесткость до 30 % при сохранении вы-



сокой износостойкости.



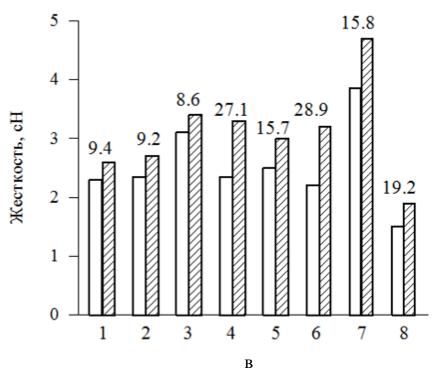



Рис. 3.21. Свойства флокированных материалов: a — воздухопроницаемость (увеличение воздухопроницаемости, раз);  $\delta$  — стойкость к истиранию (изменение стойкости к истиранию, %);  $\epsilon$  — жесткость (уменьшение жесткости, %):

|  | вспененный |  | непенный |
|--|------------|--|----------|
|--|------------|--|----------|

Номера материалов на рисунках соответствует номеру использованной основы из *табл. 2.10* и *2.11*.

### 3.3. Разработка основного и временного клеев для создания электрофлокированных рисунков методом термопереноса ворса

В технологии термопереноса ворса основной клей служит для закрепления ворса на изделии. С этой точки зрения он должен обладать теми же свойствами, что и клей для прямой печати ворсом: высокой адгезией к ворсу и материалу изделия, эластичностью, водостойкостью, а также легко наноситься через печатный шаблон, не пениться. Но кроме того вязкость его должна быть такой, чтобы не пропитать ворс, находящийся на временной основе, и создать пленку, достаточно толстую и эластичную для закрепления в ней расплавившегося порошка. Пленка клея не должна терять своей прочности и эластичности после температурного воздействия при термопереносе.

#### 3.3.1. Исследование реологических свойств основного клея

В гл. 1 описан акриловый водный клей на основе МБМ-3, АК-216 и сшивающего агента ДЭГ-1. В патенте [117] нами предложен основной клей для термопереносных электрофлокированных материалов следующего состава (maбл. 3.8). Эта рецептура была получена в результате исследований влияния вязкости клея на качество термопереноса. При этом варьировали соотношения компонентов полимерной основы клея, так как было установлено, что АК-211 загущается лучше, чем МБМ-3 (maбл. 3.14).

| 1 | à | блица | ı 3.1 | 3. | Состав | клеевой | композиции |
|---|---|-------|-------|----|--------|---------|------------|
|   |   |       |       |    |        |         |            |

| Компонент                    | Мас. части | % мас. |
|------------------------------|------------|--------|
| МБМ-3 акриловая дисперсия    | 60         | 51.2   |
| АК-211 акриловая дисперсия   | 40         | 34.1   |
| АК-216 акриловый загуститель | 6          | 5.1    |
| ДЭГ-1 эпоксидная смола       | 8          | 6.8    |
| Антивспениватель БА          | 0.2        | 0.2    |
| Аммиак водный (10%)          | 3          | 2.6    |
| Всего                        | 117.2      | 100.0  |

С указанными составами клеев изготовляли образцы бумаги и осуществляли термоперенос. В результате выявлена зависимость качества термопереноса от вязкости. Условную вязкость клея определяли по площади растекания согласно методике, приведённой в главе 2. При использовании клеев по рецептам 1, 3, 4, 7, 10–12 ворсовый слой прочно удерживается клеем на поверх-138

ности ткани. Клеи рецептов 5, 6, 12–15 жидкие, глубоко приникают в ворсовый покров, что влечет за собой расслоение бумаги при ее отделении от ткани. Клеи по рецептам 2, 8, 9 густые, при отсоединении бумаги с ворсом от сетчатого шаблона при их нанесении часть ворса отрывается от временного клея и остается на сетке шаблона, что приводит к дефектам рисунка. Оптимальными клеями для термопереноса следует считать клеи, у которых площадь растекания находится в пределах от 5 до 10 см<sup>2</sup>.

Таким образом, соотношение акриловых пленкообразователей в клеевой композиции находятся в пределах от 3 : 5 до 5 : 3, где в числителе и знаменателе соответственно количество массовых частей МБМ–3 или эмукрила и АК–211. В дальнейшем использовали соотношение 3 : 2 (60 мас. ч. МБМ–3 и 40 мас. ч. АК–211).

Для отработки режимов изготовления термопереводного материала на печатном оборудовании был проведен эксперимент, при котором клей на ворсовую бумагу наносили через печатный шаблон с помощью механической ракли на лабораторной установке УМ $\Phi$ –2/1. Использовали шаблон с толщиной сетчатой ткани 0.3 мм, давление ракли было постоянным, скорость движения ракли на лабораторной установке постоянна и равна 0.063 м/с.

Таблица 3.14. Составы и условная вязкость клеевых композиций\*

|                         | Содержание компонентов, мас. ч |         |        |        |     |     |                                    |                           |
|-------------------------|--------------------------------|---------|--------|--------|-----|-----|------------------------------------|---------------------------|
| Номер<br>рецеп-<br>туры | MBM-3                          | Эмукрил | AK-211 | AK-216 | БА  | ЛЭГ | Условная вязкость, см <sup>2</sup> | Возможность термопереноса |
| 1                       | 50                             | _       | 30     | 6      | 0.2 | 16  | 7.6                                | +                         |
| 2                       | 10                             | _       | 70     | 6      | 0.2 | 16  | 4.5                                | _                         |
| 3                       | 20                             |         | 60     | 6      | 0.2 | 6   | 5.1                                | +                         |
| 4                       | 40                             |         | 40     | 6      | 0.2 | 6   | 6.3                                | +                         |
| 5                       | 60                             | _       | 20     | 6      | 0.2 | 6   | 11.8                               | _                         |
| 6                       | 70                             |         | 10     | 6      | 0.2 | 6   | 12.3                               | _                         |
| 7                       | _                              | 50      | 30     | 6      | 0.2 | 6   | 7.7                                | +                         |
| 8                       | _                              | 10      | 70     | 6      | 0.2 | 6   | 4.0                                | _                         |
| 9                       | _                              | 20      | 60     | 6      | 0.2 | 6   | 4.8                                | _                         |
| 10                      | _                              | 30      | 50     | 6      | 0.2 | 6   | 6.3                                | +                         |
| 11                      | _                              | 40      | 40     | 6      | 0.2 | 6   | 7.3                                | +                         |
| 12                      | _                              | 60      | 20     | 6      | 0.2 | 6   | 10.3                               | +                         |
| 13                      | _                              | 70      | 10     | 6      | 0.2 | 6   | 11.0                               | _                         |
| 14                      | 100                            | _       | _      | 10     | 0.1 | 8   | 11.4                               |                           |
| 15                      | 105                            |         | _      | 5      | 0.1 | 8   | 11.8                               | _                         |
| 16                      | _                              | _       | 100    | 5      | 0.1 | 5   | _                                  | _                         |

\* рН всех композиций доводили до 10 добавлением NH<sub>4</sub>OH

Задачами эксперимента были определение:

- 1) эффективной динамической вязкости клея, при которой будет достигнут хороший термоперенос ворсового слоя;
- 2) влияния вязкости клея на четкость получаемого на ворсовой поверхности отпечатка;
  - 3) необходимого числа проходов механической ракли.

Исследования проводили на клее, рецептура которого приведена в  $maбл.\ 3.13$ , за исключением содержания щелочного агента  $NH_4OH.\ Для$  получения клеев с различной вязкостью в пробы добавляли различное количество щелочного агента так, чтобы величина pH клея изменялась от 7 до 10 (в этом диапазоне pH изменяется загущающая способность загустителя AK-216).

После этого получали термопереносной ворсовый материал, проводили термоперенос и после переноса оценивали четкость отпечатка (как соотношение линейных размеров печатных элементов на шаблоне и на изделии), а также органолептически (в баллах) — полноту переноса ворса, жесткость и гриф ворсовой поверхности. Динамическую эффективную вязкость клеев определяли по кривым течения (рис. 3.22), полученным с помощью ротационного вискозиметра «Реотест—2» для скорости сдвига [45]

$$D = \frac{\upsilon}{\delta} (c^{-1}),$$

где  $\upsilon$  – скорость движения ракли при печати, м/с;

 $\delta$  – толщина сетки шаблона, м.

Результаты определения резкости печати приведены в maбл.~3.15, общая оценка качества термопереноса – в maбл.~3.16.

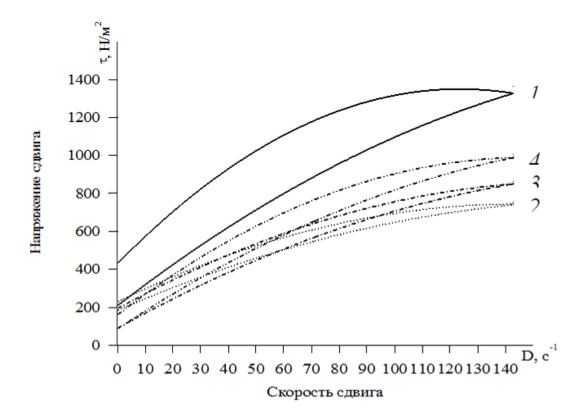



Рис. 3.22. Кривые течения клеев с различными значениями pH:  $1-\mathrm{pH}=10;\,2-\mathrm{pH}=9;\,3-\mathrm{pH}=8;\,4-\mathrm{pH}=7$ 

Таблица 3.15. Сравнительная таблица клеев с различными значениями рН по четкости контура рисунка

|                                                                   |                                               | Знач        |                                               |             |                                      |             |      | ие рН клея                        |             |                                               |             |                                               |             |       |
|-------------------------------------------------------------------|-----------------------------------------------|-------------|-----------------------------------------------|-------------|--------------------------------------|-------------|------|-----------------------------------|-------------|-----------------------------------------------|-------------|-----------------------------------------------|-------------|-------|
| Разме-                                                            |                                               | 8           |                                               |             |                                      |             |      |                                   |             | 9                                             |             |                                               |             |       |
| ры де-<br>талей<br>рисунка<br>шабло-<br>на l <sub>ш</sub> ,<br>мм | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % | Размеры детали<br>образца $l_0$ , мм | Резкость, % |      | Размеры детали образца $l_0$ , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Четкость, % |       |
| 6                                                                 | 7                                             | 85.7        | 4                                             | 66.7        | 4                                    | 66.7        |      | 4                                 | 66.7        | 4                                             | 66.7        | 5                                             | 83.3        |       |
| 7                                                                 | 7                                             | 100         | 7                                             | 100         | 7                                    | 100         |      | 7                                 | 100         | 7                                             | 100         | 7                                             | 100         |       |
| 6                                                                 | 6                                             | 100         | 6                                             | 100         | 6                                    | 100         |      | 6                                 | 100         | 5                                             | 83.3        | 6                                             | 100         |       |
| 1.5                                                               | 2                                             | 75          | 1.5                                           | 100         | 2.5                                  | 60          |      | 2                                 | 75          | 1.5                                           | 100         | 2                                             | 75          |       |
| 2                                                                 | 2.5                                           | 80          | 2.5                                           | 80          | 2                                    | 100         |      | 2                                 | 100         | 2                                             | 100         | 2                                             | 100         |       |
| Сред-                                                             | _                                             | 87.6        | I                                             | 89.3        | I                                    | 85.3        | 88.1 | I                                 | 88.3        | I                                             | 90.0        | _                                             | 91.7        | 90.01 |

### Окончание табл. 3.15

|                                                                   |                                               | Зна         |                                               |             |                                               |             |      | ие рН клея                        |             |                                               |             |                                               |             |      |
|-------------------------------------------------------------------|-----------------------------------------------|-------------|-----------------------------------------------|-------------|-----------------------------------------------|-------------|------|-----------------------------------|-------------|-----------------------------------------------|-------------|-----------------------------------------------|-------------|------|
| Разме-                                                            |                                               | 10          |                                               |             |                                               |             |      | 7*                                |             |                                               |             |                                               |             |      |
| ры де-<br>талей<br>рисунка<br>шабло-<br>на l <sub>ш</sub> ,<br>мм | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % |      | Размеры детали образца $l_0$ , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Резкость, % | Размеры детали<br>образца 1 <sub>0</sub> , мм | Четкость, % |      |
| 6                                                                 | 6                                             | 100         | 5                                             | 83.3        | 5                                             | 83.3        |      | 5                                 | 83.3        | 5                                             | 83.3        | 5                                             | 66.7        |      |
| 7                                                                 | 6                                             | 85.7        | 7                                             | 100         | 7                                             | 100         |      | 7                                 | 100         | 7                                             | 100         | 6                                             | 85.7        |      |
| 6                                                                 | 6                                             | 100         | 6                                             | 100         | 6                                             | 100         |      | 6                                 | 100         | 6                                             | 100         | 6                                             | 100         |      |
| 1.5                                                               | 2                                             | 75          | 2                                             | 75          | 1.5                                           | 100         |      | 1.5                               | 100         | 1.5                                           | 100         | 2                                             | 75          |      |
| 2                                                                 | 2                                             | 100         | 2                                             | 100         | 2                                             | 100         |      | 2                                 | 100         | 2.5                                           | 80          | 2.5                                           | 80          |      |
| Сред-<br>нее                                                      | _                                             | 92.1        | I                                             | 91.7        | _                                             | 96.7        | 93.5 | I                                 | 96.6        | I                                             | 92.6        | _                                             | 84.6        | 91.9 |

Клей, рН которого  $7^*$  использовался через 3 недели после приготовления. Испытания этого клея проводились с целью установления срока жизни клея и возможности его использования для термопереноса с течением времени, что важно для разработки безотходной технологии. Условно этот клей назвали «старым». Жизнедеятельность «старого» клея поддерживали добавлением в него перед употреблением акриловой дисперсии МБМ-3 в количестве 25-30% от веса клея.

Таблица 3.16. Экспертная оценка качества термопереноса при использовании клеев различной вязкости

|        | Динамич                                                               | еская эф-           |           |                         | Жест-   |                 | Общая   |
|--------|-----------------------------------------------------------------------|---------------------|-----------|-------------------------|---------|-----------------|---------|
|        |                                                                       | фективная вязкость, |           | Оценка                  | кость   | Гриф            | оценка  |
| Значе- | η, м                                                                  | Пас                 | контура   | переноса                | рисун-  | ворсо-          | качест- |
| ние    | нисходя- восходя- рисунк<br>щая щая ветвь (рез-<br>ветвь кривой кость | рисунка             | рисунка   | ка по-<br>сле<br>термо- | вой по- | ва тер-         |         |
| pН     |                                                                       | (рез-               | с бумаги  |                         | верх-   | мопе-           |         |
| клея   |                                                                       | кость               | на ткань, |                         | ности,  | реноса,         |         |
| КЛОЛ   | кривой                                                                | течения             | печати),  | баллы                   | пе-     | пости,<br>баллы | сумма   |
|        | течения                                                               | течения             |           | Оаллы                   | реноса, | Oamin           | в бал-  |
|        |                                                                       |                     |           |                         | баллы   |                 | лах     |
| 7      | 660                                                                   | 620                 | 0         | 0                       | 0       | 0               | 0       |
| 8      | 1260                                                                  | 1100                | 88.1      | 4                       | 4       | 4               | 12      |
| 9      | 1400                                                                  | 1230                | 90.0      | 4                       | 4       | 4               | 12      |
| 10     | 1560                                                                  | 1440                | 93.5      | 5                       | 4       | 4               | 13      |
| $7^*$  | 1080                                                                  | 700                 | 91.9      | 5                       | 4       | 4               | 13      |

Вязкость «старого» клея можно регулировать разведением МБМ–3, но с течением времени он приобретает рыхлую структуру, напоминает творожистую массу, вместо однородной пастообразной массы, которая получается непосредственно после его приготовления. Однако этот фактор на качество термопереноса не оказывает влияния. Образцы, полученные при термопереносе с использованием «старого» клея, дали положительные результаты по качеству термопереноса и всем его показателям. По результатам *табл. 3.16* видно, что лучшее качество термопереноса при получении ворсовой аппликации получили с клеем, вязкость которого равна 1560 мПа·с, а значение рН клея равно 10.

По кривым течения на *рис.* 3.22 определили диапазон динамической вязкости, при которой термоперенос осуществим: от 1000 до 1560 мПа·с [126].

По результатам исследований можно сказать, что клей со значением pH, равным 10, обладает наибольшим результатом по четкости и лучшим качеством переноса. Качество термопереноса и четкость рисунка с увеличением значения вязкости возрастают. Исключение составляет значение «старого» 144

клея, которое выпадает из общей зависимости. Это можно объяснить изменением структуры и тиксотропных свойств «старого» клея. Для выявления необходимого количества проходов механической ракли для получения четкого контура и равномерного нанесения клея по всей поверхности рисунка их число меняли от 1 до 4.

После проведения исследований на клеях с различной вязкостью установлено, что при нанесении клея через сетчатый шаблон достаточно два прохода ракли (рис. 3.23). При одном проходе клей не всегда равномерно наносится по всей поверхности рисунка, при двух проходах клей наносится по всей поверхности рисунка, дает четкий контур отпечатка, не растекается по ворсовой поверхности. С увеличением числа проходов ракли количество клея на поверхности увеличивается, что дает дополнительную жесткость готовой аппликации.

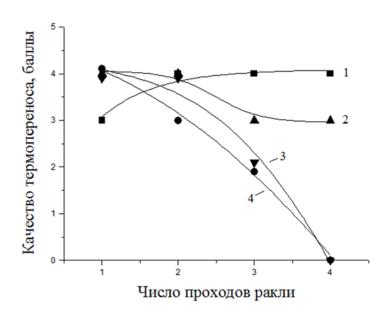



Рис. 3.23. Влияние числа проходов ракли при нанесении основного клея различной вязкости на качество термопереноса: I - pH = 10; 2 - pH = 9; 3 - pH = 8; 4 - pH = 7

# 3.3.2. Влияние состава основного клея на свойства материалов с флокированным термопереносным рисунком

Очевидно, что клей, который предназначен для закрепления ворса на текстильном материале, при термопереносе испытывает большую нагрузку, чем клей для прямой печати, так как нагревается дважды: при подплавлении термопластичного слоя и непосредственно при термопереносе. При этом он должен сохранять эластичность. Кроме того, как показали исследования, клей должен легко загущаться и вязкость его должна быть выше, чем у клея при прямой печати ворсом. Поэтому оптимизация состава клея для термопереноса

проводилась параллельно разработке состава клея для прямой печати ворсом. При этом уделяли внимание таким показателям, как качество термопереноса, жесткость, износостойкость флокированного покрытия, механические свойства пленок клея.

Помимо указанных уже полимерных основ МБМ–3, АК–211 и эмукрила М использовали различные акриловые латексы и загустители, представляющие собой дисперсии сополимеров преимущественно акриловых эфиров с мономерами, содержащие различные функциональные группы и с введенными добавками. Полимерные основы имели сухой остаток 40–50 %, загустители – в пределах 15–20 %.

При составлении клеевых композиций эти продукты использовали без разбавления. Исследованы, в частности, пленкообразователи с введением соли цинка, метилолакриламида (МОЛ)  $CH_2 = CH$ 

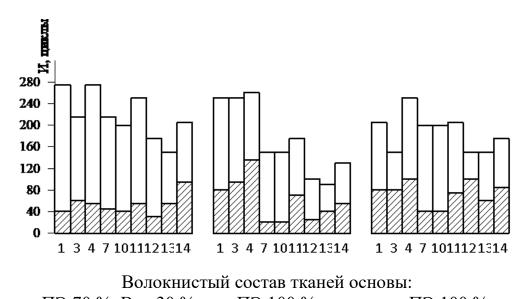
$$C = O$$

NHCH<sub>2</sub>OH, загустители – сопо-

лимеры акриловой кислоты  $CH_2 = CHCOOH$  и силана, метакриловой кислоты  $CH_2 = C - C = O$ 

 ${
m CH_3}$  ОН и глицидилметакрилата  ${
m OCH_2CHCH_2OCO(CH_3)C}={
m CH_2}$  (опытные образцы ОАО «DOC», г. Дзержинск), пленкообразователь  ${
m T-16}$  на основе сополимера этилена с винилацетатом (опытный образец ВНИИСС, С.-Петербург). Некоторые варианты клеевых композиций давали хорошую вязкость, но дальнейшие испытания эксплуатационных свойств показывали их непригодность из-за низкой прочности закрепления ворса.

Таким образом, соотношение акриловых пленкообразователей в клеевой композиции находятся в пределах от 3 : 5 до 5 : 3, где в числителе и знаменателе соответственно количество массовых частей МБМ–3 или эмукрила и АК–211. В дальнейшем использовали соотношение 3 : 2 (60 мас. ч. МБМ–3 и 40 мас. ч. АК–211).


Результаты, представленные в *табл. 3.17* и *3.18* и на *рис. 3.24* показывают, что по комплексу показателей жесткости и стойкости к истиранию лучшими являются композиция по рецепту 11 для вискозно-лавсановой ткани и композиция по рецепту 4 для полиэфирных тканей [127].

#### ворсовым слоем

| A manual manual               |              | Условная жесткость, сН                       |      |      |      |      |      |        |      |      |  |
|-------------------------------|--------------|----------------------------------------------|------|------|------|------|------|--------|------|------|--|
| Артикул ткани,<br>волокнистый | ткани        | кани ткани после термопереноса с клеем по ре |      |      |      |      |      | рецепт | у    |      |  |
| состав                        | без<br>ворса | 1                                            | 3    | 4    | 7    | 10   | 11   | 12     | 13   | 14   |  |
| 82108, Л 70                   |              |                                              |      |      |      |      |      |        |      |      |  |
| Вис 30                        | 2.3          | 12.3                                         | 11.6 | 10.2 | 12.9 | 16.3 | 7.7  | 18.5   | 16.2 | 13.7 |  |
| HF-951,                       |              |                                              |      |      |      |      |      |        |      |      |  |
| ПЭФ 100 %                     | 3.8          | 17.3                                         | 16.9 | 16.5 | 20.8 | 13.3 | 12.6 | 16.4   | 19.7 | 16.6 |  |
| 510, ПЭФ 100 %                | 1.4          | 11.2                                         | 7.3  | 9.7  | 10.8 | 10.2 | 5.9  | 12.2   | 9.8  | 13.4 |  |

Таблица 3.18. Механические свойства клеевых пленок

| Рецепт по табл. 3.14 | Разрывная нагрузка, Н | Удлинение при разрыве, % |  |  |
|----------------------|-----------------------|--------------------------|--|--|
| 4                    | 1.2                   | 830                      |  |  |
| 11                   | 1.0                   | 560                      |  |  |



ПЭ 70 %, Вис 30 % ПЭ 100 % ПЭ 100 %

Рис. 3.24. Устойчивость ворсовой поверхности к истиранию:

— в сухом виде;

— в мокром виде

# 3.3.3. Влияние состава временного клея на качество термопереноса ворса и стабильность свойств термопереносного материала во времени

Временный клей, предназначенный для закрепления ворса на временном носителе (бумаге, плёнке) должен обладать термопластичностью для того, чтобы во время термопереноса прочность связи его с ворсом ослаблялась. Важно также, чтобы адгезионные и когезионные свойства этого клея не улучшались со временем в результате структурирования. Для достижения этих свойств были опробованы ПВА и акриловые дисперсии в качестве осно-

вы клея. Для повышения термопластичности и ослабления адгезии к ворсу в клей вводили фталатные пластификаторы (диоктилфталат и бутилбензилфталат). Кроме того, выбирали вид загустителя, который обеспечивал бы требуемые свойства.

Предварительные эксперименты показали, что в данном случае больше подходят пленкообразователи акрилового типа, так как они обеспечивают большую стабильность во времени термопереносных материалов. Содержание пластификатора в клее больше, чем 50 % от массы основы клея, приводит к достаточно быстрой миграции его из клея в бумагу-основу, на ней с изнаночной стороны появляются жирные пятна, а рисунок отслаивается от временной основы.

В *табл. 3.19* приведены данные по стойкости к истиранию ворсовой бумаги, полученной с использованием вискозного ворса линейной плотностью 1.7 текс и длиной резки 0.5 мм.

Таблица 3.19. Результаты испытаний на стойкость к истиранию ворсовой бумаги (нагрузка при истирании 29.4 Н)

| Рецептура клея, мас. ч. |                | Плотность бума-       | Стойкость к ис- |
|-------------------------|----------------|-----------------------|-----------------|
|                         |                | ги, г/см <sup>3</sup> | тиранию, циклы  |
| МБМ-3                   | 100            | 0.56                  | 11              |
| ДОФ                     | 25             | 0.58                  | 13              |
| Мочевина                | чевина 5       |                       | 14              |
| Антивспениватель БА     |                |                       | 16              |
| AK-216 2                |                | 0.81                  | 18              |
|                         | до pH = 8 ÷ 10 | 0.84                  | 16              |
|                         | до рп = 8 + 10 | 0.90                  | 8               |
|                         |                | 0.56                  | 27              |
| МБМ-3                   | 100            | 0.58                  | 29              |
| ДОФ                     | 25             | 0.74                  | 41              |
| Мочевина                | 5              | 0.78                  | 51              |
| Антивспениватель БА     | 0.2            | 0.81                  | 39              |
| ЭM−1                    | 16             | 0.84                  | 45              |
|                         |                | 0.90                  | 33              |
|                         |                | 0.56                  | 13              |
| МБМ-3                   | 100            | 0.58                  | 14              |
| ДОФ                     | 25             | 0.74                  | 15              |
| Гипан                   | 15             | 0.78                  | 16              |
| Мочевина                | 5              | 0.81                  | 16              |
| Антивспениватель БА     | 0.2            | 0.84                  | 15              |
|                         |                | 0.90                  | 11              |

По приведенным результатам можно сделать вывод о возможности применения загустителей АК-216 и гипана для изготовления временного

клея. Они обеспечивают минимальную прочность закрепления ворса, достаточную для того, чтобы ворсинки не вырывались в момент отделения печатного шаблона от ворсовой бумаги.

Загуститель ЭМ–1 придает клею большую адгезию к ворсу и бумаге, что приводит к дефектам при термопереносе. В *табл. 3.20* приведены результаты термопереноса ворса при использовании различных пластификаторов во временном клее. Термоперенос осуществляли на хлопчатобумажное трикотажное полотно с помощью утюга (по 50 образцов каждого вида).

Наиболее приемлемой является клеевая композиция с ДОФ, хотя на большинстве образцов наблюдается переход временного клея с бумаги.

Таблица 3.20. Влияние вида пластификатора на качество термоперено-

### ворса

|                         |                | Доля образцов, % |               |
|-------------------------|----------------|------------------|---------------|
| Рецептура клея, мас. ч. | с полным пере- | с частичным пе-  | с отсутствием |
|                         | носом рисунка  | реносом рисунка  | переноса      |
| МБМ-3100                |                |                  |               |
| Гипан15                 |                |                  |               |
| ББФ25                   | 20             | 40               | 40            |
| Мочевина25              |                |                  |               |
| Антивспениватель2       |                |                  |               |
| МБМ-3100                |                |                  |               |
| AK-21610                |                |                  |               |
| ДОФ25                   | 40             | 60               | 0             |
| Мочевина2               |                |                  |               |
| Антивспениватель2       |                |                  |               |

Поскольку процессы изготовления термопереносного материала и его использования для отделки могут отстоять во времени на несколько месяцев и даже лет, важно решить задачу увеличения стабильности материала, необходимости сохранения качества термопереноса с течением времени. Одним из путей решения этой проблемы является предотвращение образования дополнительных связей в клеевой пленке временного клея при его сушке и подплавлении термопластичного порошка и при длительном хранении. С этой целью была проведена серия опытов на ворсовой бумаге с использованием менее химически активных загустителей (табл. 3.21). Использован основной клей по рецептуре из табл. 3.13 и четыре вида термопластичных порошков. Порошки наносили двумя способами: напылением на клеевой отпечаток и в виде пасты при массовом соотношении порошка и основного клея 3:7.

Образцы сушили в ИК-сушилке в течение 120 с. Термоперенос осуществляли на хлопчатобумажное трикотажное полотно с помощью термопресса фирмы *Schenk GmbH* (Германия). Параметры термопереноса: температура

170 °C, время 90 с. Качество термопереноса оценивали органолептически. Результаты приведены в *табл. 3.22*. По представленным данным видно, что наиболее качественный термоперенос осуществляется при использовании рецептур временного клея 3 и 5, в которых использованы загустители растительного происхождения Манутекс RS и карбоксиметилцеллюлоза. Таким образом, предположение о том, что эти загустители будут меньше структурировать клеевую пленку, подтвердилось.

Таблица 3.21. Состав клеевых композиций временного клея

| Компоненты                           | Колич       | ество, м | иас. ч. в | композ | иции |
|--------------------------------------|-------------|----------|-----------|--------|------|
| Компоненты                           | 1           | 2        | 3         | 4      | 5    |
| МБМ-3                                | 100         | 100      | 100       | 100    | 100  |
| Гипан                                | 15          | _        | _         | _      | _    |
| Загуститель АК-216                   | _           | 10       | _         | _      | _    |
| Манутекс RS (3 %-й водный p-p)       | _           | _        | 15        | _      | _    |
| Загуститель № 2-12                   | _           | _        | _         | 10     | _    |
| КМЦ (5%-й водный р-р)                | _           | _        | _         | _      | 15   |
| ДОФ                                  | 25          | 25       | 35        | 30     | _    |
| ББФ                                  | _           | _        | _         | _      | 20   |
| Мочевина                             | 25          | 25       | 25        | 25     | 25   |
| Гидроксид аммония (10%-й водный р-р) | до pH = 8÷9 |          |           |        |      |
| Антивспениватель БА                  | 2           | 2        | 2         | 2      | 2    |

Таблица 3.22. Органолептичексая оценка качества термопереноса

| Образец,                                                 |                         | Качество          | переноса в         | opca*              |                    |  |  |  |
|----------------------------------------------------------|-------------------------|-------------------|--------------------|--------------------|--------------------|--|--|--|
| вид термопластич-<br>ного порошка и спо-<br>соб введения | после изго-<br>товления | спустя 1<br>месяц | спустя 2<br>месяца | спустя 3<br>месяца | спустя 4<br>месяца |  |  |  |
|                                                          | Времен                  | нный клей У       | <b>№</b> 1         |                    |                    |  |  |  |
| Напыление                                                |                         |                   |                    |                    |                    |  |  |  |
| 1.1. Platamid                                            | ++-                     | ++-               | +                  | +                  | +                  |  |  |  |
| 1.2. <i>Filtex</i>                                       | ++-                     | ++-               | +                  |                    |                    |  |  |  |
| 1.3. ПА-порошок                                          | +                       | +                 | +                  | +                  | +                  |  |  |  |
| 1.4. <i>Griltex</i>                                      | +                       | +                 | +                  | +                  | +                  |  |  |  |
|                                                          |                         | Паста             |                    |                    |                    |  |  |  |
| 1.5. Platamid                                            |                         |                   |                    |                    |                    |  |  |  |
| 1.6. <i>Filtex</i>                                       |                         |                   |                    |                    |                    |  |  |  |
| 1.7. ПА-порошок                                          |                         |                   |                    |                    |                    |  |  |  |
| 1.8. <i>Griltex</i>                                      |                         |                   |                    |                    |                    |  |  |  |
|                                                          | Временный клей № 2      |                   |                    |                    |                    |  |  |  |
|                                                          | Напыление               |                   |                    |                    |                    |  |  |  |
| 2.1. Platamid                                            | +++                     | ++-               | ++-                |                    |                    |  |  |  |
| 2.2. <i>Filtex</i>                                       | +++                     |                   |                    |                    |                    |  |  |  |

| после изго- |                                        |                    |                 | Качество переноса ворса* |  |  |  |  |  |  |
|-------------|----------------------------------------|--------------------|-----------------|--------------------------|--|--|--|--|--|--|
| после изго- | опуста 1                               | опуста 2           | онуюта 2        | спустя 4                 |  |  |  |  |  |  |
| товления    | спустя 1<br>месяц                      | спустя 2<br>месяца | спустя 3 месяца | месяца                   |  |  |  |  |  |  |
| товления    | месяц                                  | месяца             | месяца          | месяца                   |  |  |  |  |  |  |
| +++         | +                                      | +                  | +               | +                        |  |  |  |  |  |  |
| +++         | ++-                                    | ++-                | +               | +                        |  |  |  |  |  |  |
|             | Паста                                  |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
| Времен      | іный клей Л                            | <b>6</b> 3         |                 |                          |  |  |  |  |  |  |
| Напыление   |                                        |                    |                 |                          |  |  |  |  |  |  |
| +++         | +++                                    | +++                | ++-             | ++-                      |  |  |  |  |  |  |
| +++         | +++                                    | +++                | +++             | +++                      |  |  |  |  |  |  |
| +++         | +++                                    | +++                | +++             | +++                      |  |  |  |  |  |  |
| ++-         | ++-                                    | ++-                | ++-             | ++-                      |  |  |  |  |  |  |
| Паста       |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
| Времен      | ный клей Л                             | <u></u>            |                 |                          |  |  |  |  |  |  |
| На          | апыление                               |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
| ++-         | ++-                                    | ++-                | ++-             | ++-                      |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             | Паста                                  |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
| Времен      | ный клей Л                             | <u></u> 5          |                 |                          |  |  |  |  |  |  |
| На          | апыление                               |                    |                 |                          |  |  |  |  |  |  |
| +++         | +++                                    | +++                | +++             | +++                      |  |  |  |  |  |  |
| ++-         | ++-                                    | ++-                | +++             | +++                      |  |  |  |  |  |  |
| ++-         | ++-                                    | ++-                | ++-             | ++-                      |  |  |  |  |  |  |
| +++         | +++                                    | +++                | +++             | +++                      |  |  |  |  |  |  |
|             | Паста                                  | •                  |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             |                                        |                    |                 |                          |  |  |  |  |  |  |
|             | ###################################### | +++                | +++             | Н++                      |  |  |  |  |  |  |

Окончание табл. 3.22

| Образец,                                                 | Качество переноса ворса* |                   |                    |                    |                    |  |  |  |
|----------------------------------------------------------|--------------------------|-------------------|--------------------|--------------------|--------------------|--|--|--|
| вид термопластич-<br>ного порошка и спо-<br>соб введения | после изго-<br>товления  | спустя 1<br>месяц | спустя 2<br>месяца | спустя 3<br>месяца | спустя 4<br>месяца |  |  |  |
| 5.7. ПА-порошок                                          |                          |                   |                    |                    |                    |  |  |  |
| 5.8. Criltex                                             |                          |                   |                    |                    |                    |  |  |  |

<sup>\*+++</sup> качественный термоперенос;

- ++- неполный перевод рисунка;
- + переход бумаги и временного клея на рисунок;
- термоперенос не осуществлялся.

# 3.3.4. Влияние температуры и продолжительности подплавления порошков на качество термопереноса

Для разработки технологии термопереноса важно получить термопластичный слой, который обеспечивал бы прочное и эластичное закрепление ворсовой аппликации на текстиле, коже или другом материале, а также легкий процесс самого термопереноса. Процесс термопереноса ворса в большой степени зависит от свойств термопластичного слоя, которым служит термопластичный порошок. Порошок должен иметь достаточно низкую температуру плавления, чтобы при термопереносе не началась термодеструкция ворса. Вязкость расплава должна обеспечивать его быстрое проникновение в поры текстильного материала, причем давление в процессе термопереноса не может быть высоким во избежание заминания ворса. Кроме того, должна обеспечиваться высокая адгезия между текстильным материалом, термопластом и слоем эластичного клея.

При изготовлении термопереводной картинки неизвестно, как правило, какой материал будет использован в дальнейшем в качестве основы (текстиль или кожа, вид волокна, структура, толщина и др.), на которую будет перенесен ворсовой слой. Практическая работа показала, что при неправильно выбранных режимах термопереноса можно получить большой процент дефектов. Поэтому в данных исследованиях поставлена задача установления связи между основными технологическими показателями термопластичных порошков и материалов-основ и качеством термопереноса. После этого можно сформулировать рекомендации для потребителя с целью обеспечить высокие эксплуатационные свойства получаемых материалов и стабильность результатов.

Проведены исследования термопластичных порошков различной природы (полиамидные, поливинилбутиральные, сополимер этилена с винилацетатом, полиэтиленовые), температурных характеристик и дисперсности и оценено влияние всех перечисленных свойств на качество переноса и свойства термопереносного материала.

Первые пробы показали, что термоперенос осуществляется легче и качественнее, если термопластичный порошок после его нанесения на клеевой отпечаток предварительно оплавить. Оплавленные частицы порошка быстрее расплавляются, что снижает время термопереноса. Одновременно с оплавлением происходит сушка клеевого отпечатка на ворсовой бумаге. Оплавление необходимо, чтобы слой порошка не осыпался при складировании, транспортировке и непосредственно укладывании на материал или изделие для переноса.

Для определения влияния технологических параметров оплавления и переноса флокированного рисунка на качество этих операций и полученных материалов проведены серии опытов с порошками ПВБ, БЭН–50 и ПА 66/6. При этом наработаны партии термопереводных материалов с использованием одинакового сырья и технологии изготовления, различавшиеся лишь видом термопластичного слоя. Флокированные аппликации переводили на хлопчатобумажную сорочечную ткань «маль», имеющую поверхностную плотность 66 г/м<sup>2</sup> и толщину 0.20 мм.

Первую партию образцов подплавляли при температуре 250 °C. Влияние температуры и времени термопереноса на стойкость к истиранию ворсового слоя в сухом и мокром видах после переноса, а также на условную жесткость готового материала (при сплошном флокировании) показано на рис. 3.25–3.27. Влияние температуры переноса на долю перенесенного ворса  $\Delta\Pi_{\Pi}$  показано на рис. 3.28.

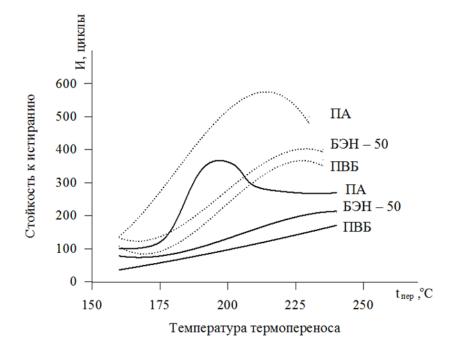



Рис. 3.25. Зависимость стойкости флокированного материала к истиранию в сухом и мокром состоянии от температуры переноса:

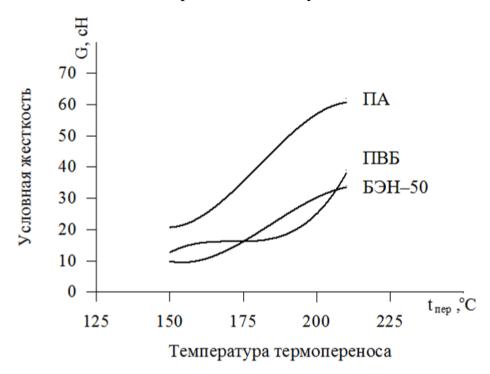



Рис. 3.26. Зависимость условной жесткости флокированного материала от температуры термопереноса



Рис. 3.27. Зависимость условной жесткости флокированного материала от времени термопереноса

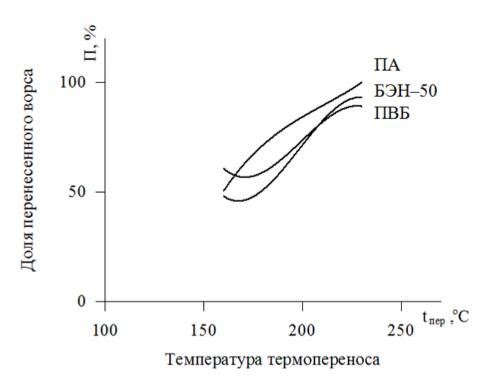



Рис. 3.28. Зависимость доли перенесенного ворса от температуры термопереноса

Долю перенесенного ворса  $\Delta\Pi_\Pi$  (в процентах) рассчитывали как отношение массы ворса, перенесенного на ткань, к массе ворса до переноса на временной основе (бумаге):

$$\Delta\Pi_{\Pi} = \frac{m_2 - m_3}{m_2 - m_1} \cdot 100 \% ,$$

где  $m_1$  – масса бумаги с высушенным клеем, г;

 $m_2$  – масса бумаги с ворсом, г;

 $m_3$  – масса бумаги после переноса ворса на ткань, г.

Графики показывают, что жесткость материала возрастает с увеличением размера частиц порошка, времени и температуры термопереноса. Так же с увеличением указанных параметров возрастают прочность закрепления ворса на ткани и доля перенесенного ворса. Исключение составляют образцы с полиамидным порошком, у которых наблюдается экстремальная зависимость по прочности.

Стойкость к истиранию в мокром виде понижается на 30–50 % в сравнении с сухими образцами. Как видим, увеличение времени термопереноса от 4 до 40 с ведет к многократному увеличению жесткости материала. Доля перенесенного ворса приблизилась к 90 % при температуре термопереноса 200 °С и выше. Необходимо помнить при этом, что такая температура может вызвать процессы деструкции в волокне, изменение цвета. Поэтому важно по-

нять влияние на процесс термопереноса таких технологических параметров, как дисперсность и время оплавления порошка.

При изготовлении *второй партии образцов* термопластичный слой подплавляли при разной температуре, термоперенос осуществляли в течение 10 с при температуре 190 °C для полиамидного порошка и при температуре 230 °C для образцов с поливинилбутиральным и бутиральэпоксидным порошками. Влияние температуры подплавления на жесткость флокированного материала изображено на *рис. 3.29*. Влияние температуры подплавления на стойкость флокированного материала к истиранию в мокром и сухом виде показано на *рис. 3.30*.

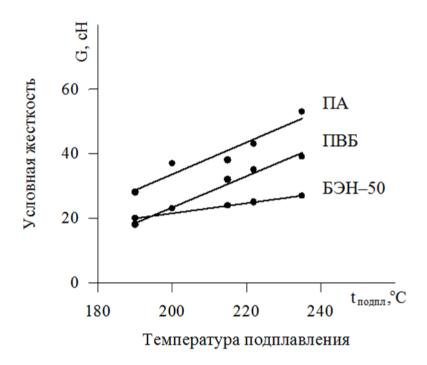



Рис. 3.29. Зависимость условной жесткости от температуры подплавления термопластичного слоя

Полученные данные позволяют сделать выводы о том, что наиболее подходящим для данной технологии является полиамидный порошок, так как материалы, полученные с его использованием, выдерживают не менее 200 циклов истирания в мокром виде. Потеря прочности закрепления ворса в мокром состоянии происходит в среднем на 30 %, в то время как у порошков ПВБ и БЭН прочность снижается в несколько раз.

Установлено также, что между стойкостью к истиранию ворсового слоя и температурой подплавления существует прямая связь. Уменьшения жесткости термопереносного материала можно добиться, используя более мелкий порошок. При этом толщина всего термопластичного слоя уменьшится. Важным выводом является необходимость установления связи между температу-

рой плавления порошка и температурами, оптимальными для его оплавления и процесса термопереноса, поскольку точного соответствия между этими показателями нет. Для того чтобы получить высокое качество термопереносной картинки и обеспечить воспроизводимость этого качества, необходим всесторонний анализ процесса, в том числе анализ дефектов термопереноса.

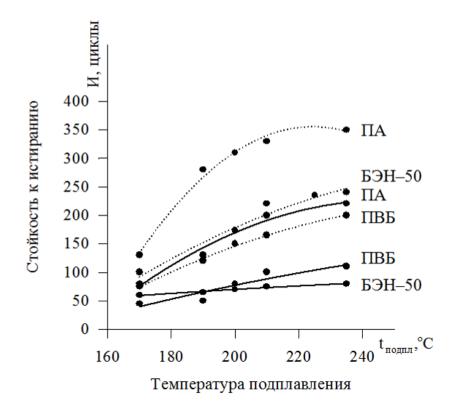



Рис. 3.30. Зависимость стойкости к истиранию флокированного материала от температуры подплавления термопластичного слоя:

— в мокром виде, · · · в сухом виде

При термопереносе могут наблюдаться такие дефекты, как когезионный разрыв бумаги, частичный перенос ворса, переход порошка без ворса на ткань, отслаивание ворсового слоя, глубокое проникновение термопласта в ткань (пропитывание). Эти дефекты обусловлены взаимодействием между собой слоев термопереносного материала, а также взаимодействием термопластичного слоя с материалом, подлежащим отделке. В *табл. 3.23, 3.24* приведены области технологических параметров, приводящие к различного рода дефектам.

Анализ таблиц показывает, что порошок ПВБ, например, не обеспечивает стабильного качества в широком температурно-временном диапазоне, наблюдается частичный перенос ворса. При использовании этиленвинилацетатного порошка также в широком температурно-временном интервале происходит переход порошка на декорируемый материал без ворса, что говорит о слабой адгезии полимера к ворсу.

Таблица 3.23. **Характеристика качества оплавления термопластичного** слоя

| Вид     | Температура       | Время оп-   | -                                      |  |  |  |
|---------|-------------------|-------------|----------------------------------------|--|--|--|
| порошка | оплавления,<br>°С | лавления, с | Примечание                             |  |  |  |
|         |                   | 150–170     | Частично расплавился термопласт        |  |  |  |
|         | 175               | 180–210     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 225–230     | Подгорел ворс                          |  |  |  |
|         |                   | 195–200     | Термопласт частично расплавился        |  |  |  |
|         | 190               | 165–190     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 210–220     | Подгорел ворс                          |  |  |  |
| ПА      |                   | 110–120     | Частично расплавился термопласт        |  |  |  |
| IIA     | 195               | 130–140     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 160–170     | Подгорел ворс                          |  |  |  |
|         |                   | 30–45       | Термопласт не оплавился                |  |  |  |
|         | 210               | 60–70       | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 75–85       | Подгорел ворс                          |  |  |  |
|         | 230               | 30–40       | Термопласт расплавился по всей площади |  |  |  |
|         | 230               | 45–50       | Подгорел ворс                          |  |  |  |
|         |                   | 240–250     | Частично расплавился термопласт        |  |  |  |
|         | 175               | 255–260     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 265–270     | Подгорел ворс                          |  |  |  |
|         |                   | 220–230     | Частично расплавился термопласт        |  |  |  |
|         | 190               | 240–250     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 255–260     | Подгорел ворс                          |  |  |  |
|         |                   | 160–175     | Термопласт расплавился не полностью    |  |  |  |
| ПВБ     | 195               | 170–175     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 180–195     | Подгорел ворс                          |  |  |  |
|         |                   | 135–140     | Термопласт не оплавился полностью      |  |  |  |
|         | 210               | 145–150     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 160–165     | Подгорел ворс                          |  |  |  |
|         |                   | 100–105     | Частично расплавился термопласт        |  |  |  |
|         | 230               | 110–120     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 130–135     | Подгорел ворс                          |  |  |  |
|         |                   | 300–310     | Частично расплавился термопласт        |  |  |  |
|         | 175               | 250–260     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 315–320     | Подгорел ворс                          |  |  |  |
| LOH     |                   | 150–155     | Частично расплавился термопласт        |  |  |  |
| БЭН     | 190               | 160–170     | Термопласт расплавился по всей площади |  |  |  |
|         |                   | 180–190     | Подгорел ворс                          |  |  |  |
|         | 105               | 130–135     | Частично расплавился термопласт        |  |  |  |
|         | 195               | 140–145     | Термопласт расплавился по всей площади |  |  |  |

|  | 150–155 | Подгорел ворс |   |        |
|--|---------|---------------|---|--------|
|  |         |               | 0 | - 2.22 |

Окончание табл. 3.23

| Вид     | Температура | Время оп-   |                                        |  |
|---------|-------------|-------------|----------------------------------------|--|
| порошка | оплавления, | лавления, с | Примечание                             |  |
|         | °C          |             | _                                      |  |
|         |             | 110–115     | Термопласт не плавится полностью       |  |
|         | 210         | 120–130     | Термопласт расплавился по всей площади |  |
| БЭН     |             | 135–140     | Подгорел ворс                          |  |
| ВЭП     |             | 90–105      | Термопласт не плавится полностью       |  |
|         | 230         | 110–120     | Термопласт расплавился по всей площади |  |
|         |             | 120–130     | Подгорел ворс                          |  |

# Таблица 3.24. Типичные дефекты при отработке процесса термопереноса

### ворса

|                          | Темпера                                        | атура и врем                                     | ия переноса, г                                   | іри которых г                                 | роявляется де                                              | ефект:                                         |
|--------------------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| Вид<br>по-<br>рош-<br>ка | когезион-<br>ный разрыв<br>бумаги              | частич-<br>ный пе-<br>ренос<br>ворса             | переход<br>порошка<br>на ткань                   | отслаива-<br>ние ворсо-<br>вого слоя          | проникно-<br>вение тер-<br>мопласта<br>в ткань             | порошок<br>не пла-<br>вится<br>полно-<br>стью  |
| ПА                       | Температура от 160 до 230 °C, время более 10 с | Темпера-<br>тура<br>не выше<br>160 °C            | Отсутству-                                       | Отсутству-                                    | Темпера-<br>тура свыше<br>190 °С,<br>время бо-<br>лее 10 с | Температура не выше 160 °C                     |
| ПВБ                      | Отсутству-                                     | Температура от 160 до 220 °C, время от 5 до 40 с | <b>»</b>                                         | Темпера-<br>тура<br>не выше<br>200 °C         | Отсутству-                                                 | Температура не выше 190 °С, время не более 5 с |
| ЭВА                      | Отсутству-<br>ет                               | Отсут-<br>ствует                                 | Температура от 180 до 210 °C, время от 5 до 30 с | Отсутству-ет                                  | Отсутству-<br>ет                                           | Темпера-<br>тура<br>не выше<br>180 °C          |
| НЄа                      | <b>»</b>                                       | Темпера-<br>тура<br>не выше<br>180 °C            | Отсутству-                                       | При тем-<br>пературе<br>190 °C,<br>время 10 с | *                                                          | Темпера-<br>тура<br>120 °C                     |

Необходимо, чтобы порошок был равномерно оплавлен по всей площади. Слишком интенсивное температурное воздействие на термопереносной материал приводит к подгоранию ворсового слоя, что недопустимо. На рис. 3.31 обобщены данные, приведённые в табл. 3.23 и 3.24. Широкими полосами показаны области равномерного оплавления порошка по всей площади рисунка. Выше расположена область, в которой подгорает ворс, ниже — область неполного оплавления. График показывает, что наиболее легко плавится, несмотря на свои крупные размеры, полиамидный порошок. Он и был взят для дальнейших исследований.

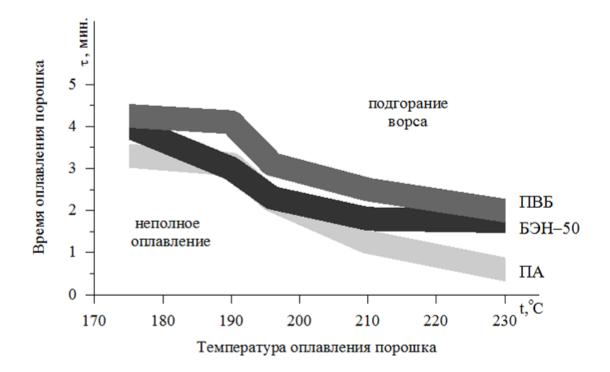



Рис. 3.31. Связь между температурой и временем оплавления порошков

### 3.3.5. Влияние характеристик и технологии применения термопластичных порошков на свойства получаемых материалов

Приведенные выше исследования показали, что свойства термопереносных флокированных материалов (жесткость, прочность закрепления ворса) зависят, в том числе, от толщины образующегося в результате температурного воздействия на порошок полимерного слоя термопласта. Возможно, что и температурные характеристики порошков различны при разных размерах частиц. Для исследования этого вопроса были взяты два вида порошков: полиамидный марки Б и полиэтиленовый марки ПЭНД 273. Для разделения 160

порошков на фракции их просеивали через капроновые сита с ячейками 0.54; 0.42 и 0.24 мм. После просеивания с помощью микроскопа определяли средний диаметр поперечника частиц и рассчитывали коэффициент вариации. Температурные характеристики полученных фракций исследованы на приборах ПТП и дериватографе. Результаты исследований приведены в *табл. 3.25* и на *рис. 3.32*.

Таблица 3.25. Технологические характеристики фракций термопластичных

### порошков

| Вид по- Средний размер попе- |                         | Выход    | Коэффициент вариации по | Температура плавления, °C |                     |  |
|------------------------------|-------------------------|----------|-------------------------|---------------------------|---------------------|--|
| рошка                        | речника час-<br>тиц, мм | фракции, | поперечнику,            | по ПТП                    | по термо-<br>грамме |  |
|                              | 0.69                    | 32.0     | 8.7                     | 165–180                   | 174                 |  |
| ПА                           | 0.47                    | 41.0     | 7.9                     | 140–170                   | 167                 |  |
| IIA                          | 0.32                    | 19.4     | 7.8                     | 168–180                   | 164                 |  |
|                              | 0.19                    | 7.6      | 26.2                    | 160–180                   | 174                 |  |
|                              | 1.49                    | 74.4     | 18.5                    | 110–145                   | 138                 |  |
| ПЭ                           | 0.49                    | 15.0     | 15.5                    | 115–160                   | 146                 |  |
|                              | 0.36                    | 8.9      | 10.5                    | 110–155                   | 134                 |  |
|                              | 0.18                    | 1.7      | 30.3                    | 125–160                   | 141                 |  |

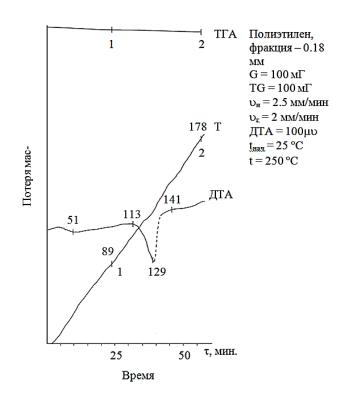



Рис. 3.32. Термограммы полиэтилена

Данные таблицы показывают, что температура плавления отдельных фракций неодинакова и не соответствует значениям, указанным в технических условиях (220 °C для ПА и 133–135 °C для ПЭ). Однако нет связи между этой температурой, средним размером частиц фракций и однородностью по размерам в пределах фракций.

При термопереносе важно, чтобы термопластичный слой расплавлялся не полностью и не на всю глубину пропитывал текстильный материал во избежание брака. Поэтому температуру, время и давление переноса нужно устанавливать с большой точностью.

Целью дальнейших исследований было определение оптимальных режимов термопереноса на конкретные материалы-основы и установление зависимости между свойствами флокированного материала и температурными характеристиками порошков (температурой текучести и температурой плавления). В лабораторных условиях были наработаны образцы термопереносного флокированного материала, отличавшиеся между собой видом и дисперсностью термопластичного порошка.

Технология получения образцов аналогична приведенной в подразд. 3.3.4, с той разницей, что оплавление порошка проводили в ИК-сушилке, а термоперенос осуществляли на лабораторном термопрессе.

Предыдущие исследования показали, что на качество материала оказывают влияние как параметры подплавления термопластичного порошка, так и параметры термопереноса. Для выбора времени подплавления в ИК—сушилке проведены исследования партии термопереносных картинок, изготовленных с различными фракциями порошков. Результаты представлены в *табл. 3.26*.

Таблица 3.26. Влияние времени подплавления порошка на качество термопереноса

| -           | Фракция, | Время под-   | Визуальная оценка качества      |
|-------------|----------|--------------|---------------------------------|
| Вид порошка | MM       | плавления, с | термопереноса                   |
|             |          | 40           | Когезионный разрыв бумаги       |
|             |          | 50           | » » »                           |
|             | 0.69     | 60           | Удовлетворительный термоперенос |
|             |          | 70           | Переход временного клея         |
|             |          | 80           | » » »                           |
|             | 0.47     | 40           | Неполный перенос ворса          |
| Полиомиличт |          | 50           | Отслаивание ворса               |
| Полиамидный |          | 60           | Удовлетворительный термоперенос |
|             |          | 70           | Переход временного клея         |
|             |          | 80           | » » »                           |
|             |          | 40           | Когезионный разрыв бумаги       |
|             | 0.22     | 50           | Неполный перенос ворса          |
|             | 0.32     | 60           | Удовлетворительный термоперенос |
|             |          | 70           | Переход временного клея         |

|  |    | I                                      |
|--|----|----------------------------------------|
|  | 80 | \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|  | 00 | <i>'' '' ''</i>                        |

| Вид по-    | Фракция, | Время под-   | Визуальная оценка качества        |
|------------|----------|--------------|-----------------------------------|
| рошка      | MM       | плавления, с | термопереноса                     |
|            |          | 40           | Когезионный разрыв бумаги         |
| Полиамид-  |          | 50           | Удовлетворительный термоперенос   |
| , ,        | 0.19     | 60           | » » »                             |
| ный        |          | 70           | Отслаивание ворса                 |
|            |          | 80           | Частичный переход временного клея |
|            |          | 30           | Отслаивание ворсового слоя        |
|            |          | 40           | Когезионный разрыв бумаги         |
|            | 1.49     | 50           | » » »                             |
|            |          | 60           | Отслаивание ворсового слоя        |
|            |          | 70           | Когезионный разрыв бумаги         |
|            |          | 30           | Частичный переход временного клея |
|            |          | 40           | Отслаивание ворса                 |
|            | 0.49     | 50           | » » »                             |
|            |          | 60           | » » »                             |
| Полиэтиле- |          | 70           | Когезионный разрыв бумаги         |
| новый      |          | 30           | » » »                             |
|            |          | 40           | » » »                             |
|            | 0.36     | 50           | Отслаивание ворса                 |
|            |          | 60           | Удовлетворительный термоперенос   |
|            |          | 70           | » » »                             |
|            |          | 30           | Отслаивание ворсового слоя        |
|            |          | 40           | » » »                             |
|            | 0.18     | 50           | Хороший термоперенос              |
|            |          | 60           | Удовлетворительный термоперенос   |
|            |          | 70           | Когезионный разрыв бумаги         |

Термопереносные картинки с полиэтиленовым порошком показали очень неравномерные результаты по закреплению ворсового слоя на ткани, поэтому в дальнейшем исследования проводили на полиамидном порошке.

Аналогичные испытания проведены для определения диапазона времени термопереноса. Результаты представлены в виде схемы (*puc. 3.33*), на которой не заштрихована область термопереноса высокого качества.

Затем были определены зоны температуры и давления, при которых может осуществляться качественный термоперенос ворсового слоя при использовании различных фракций полиамидного порошка. Качество переноса оценивали визуально. Опыты показали, что при увеличении температуры и давления появляются такие дефекты, как подгорание ворса, когезионный разрыв бумаги, переход временного клея на ворс.

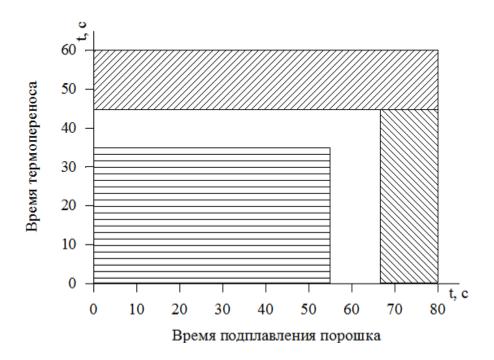



Рис. 3.33. Области качественного и дефектного термопереноса при использовании полиамидного порошка:



Более широкую область термопереноса имеет порошок с наименьшим диаметром фракции (рис. 3.34, заштрихована область дефектного термопереноса). У более крупного порошка область термопереноса сужается. Таким образом, были выбраны области термопереноса, в пределах которых изучали физико-механические свойства образцов с ворсовым слоем после термопереноса.

Для выбора оптимальной фракции порошка были наработаны партии ворсовой бумаги. Каждая партия при термопрессовании подвергалась различным воздействиям температуры и давления в пределах областей термопереноса, выбранных для каждой фракции. Перенос ворсового слоя осуществлялся на хлопчатобумажное интерлочное полотно с поверхностной плотностью 200 г/м². Качество полученного материала оценивали долей перешедшего с бумаги на трикотаж ворса, а также стойкостью ворсового слоя к истиранию и условной жесткостью материала. Стойкость к истиранию определяли на приборе ИТ—3 при нагрузке 18.7 Н. Результаты исследований приведены в *табл. 3.27*.

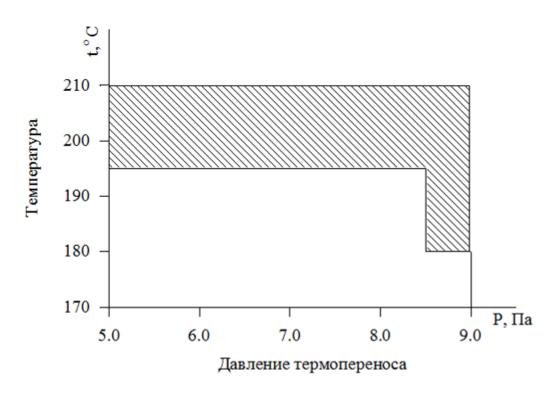



Рис. 3.34. Влияние параметров термопереноса на его качество. Фракция полиамидного порошка 0.19 мм

Таблица 3.27. Свойства флокированного термопереносного материала

| Фракции | Напряжение  | Давление | Доля пере- | Стойкость    | Условная   |
|---------|-------------|----------|------------|--------------|------------|
| порош-  | на ЛАТРе, В | переноса | шедшего    | к истиранию, | жесткость, |
| ка, мм  | на лите, в  | кПа      | ворса, %   | циклы        | сН         |
|         |             | 0.75     | 90         | 250          | 5          |
|         | 160         | 0.78     | 95         | 225          | 6          |
|         | 100         | 0.81     | 96         | 200          | 7          |
|         |             | 0.85     | 96         | 175          | 8          |
|         |             | 0.75     | 96         | 275          | 6          |
| 0.19    | 165         | 0.78     | 96         | 250          | 9          |
| 0.19    |             | 0.81     | 92         | 200          | 10         |
|         |             | 0.85     | 87         | _            | 11         |
|         |             | 0.75     | 77         | _            | _          |
|         | 170         | 0.78     | 75         | _            | _          |
|         | 170         | 0.81     | 67         | _            | _          |
|         |             | 0.85     | 59         | _            | _          |

| Фракции | Напряжение  | Давление | Доля пере- | Стойкость    | Условная   |
|---------|-------------|----------|------------|--------------|------------|
| порош-  | на ЛАТРе, В | переноса | шедшего    | к истиранию, | жесткость, |
| ка, мм  | на лите, в  | кПа      | ворса, %   | циклы        | сН         |
|         |             | 0.75     | 97         | 400          | 7          |
|         | 160         | 0.78     | 95         | 400          | 7          |
|         | 100         | 0.81     | 95         | 375          | 10         |
|         |             | 0.85     | 97         | 325          | 12         |
|         |             | 0.75     | 96         | 400          | 14         |
| 0.32    | 165         | 0.78     | 94         | 375          | 16         |
| 0.32    | 165         | 0.81     | 92         | 350          | 17         |
|         |             | 0.85     | 82         | _            | 19         |
|         |             | 0.75     | 77         | _            | _          |
|         | 170         | 0.78     | 74         | _            | _          |
|         | 170         | 0.81     | 65         | _            | _          |
|         |             | 0.85     | 57         | _            | _          |
|         |             | 0.75     | 63         | 375          | _          |
|         | 1.00        | 0.78     | 92         | 300          | 16         |
|         | 160         | 0.81     | 93         | 300          | 16         |
|         |             | 0.85     | 90         | _            | 17         |
|         | 165         | 0.75     | 60         | 375          | _          |
| 0.47    |             | 0.78     | 85         | 350          | 17         |
| 0.47    |             | 0.81     | 80         | 300          | 17         |
|         |             | 0.85     | 70         | _            | _          |
|         | 170         | 0.75     | 75         | _            | _          |
|         |             | 0.78     | 72         | _            | _          |
|         |             | 0.81     | 65         | _            | _          |
|         |             | 0.85     | 53         | _            | _          |
|         |             | 0.75     | 62         | 325          | _          |
|         | 1.60        | 0.78     | 88         | 300          | 17         |
|         | 160         | 0.81     | 87         | 275          | 19         |
|         |             | 0.85     | 77         | _            | 40         |
|         |             | 0.75     | 93         | 300          | 36         |
| 0.50    | 1.65        | 0.78     | 90         | 250          | 40         |
| 0.69    | 165         | 0.81     | 70         | 175          | _          |
|         |             | 0.85     | 55         | _            | _          |
|         |             | 0.75     | 65         | _            | _          |
|         | 150         | 0.78     | 60         | _            | _          |
|         | 170         | 0.81     | 60         | _            | _          |
|         |             | 0.85     | 56         | _            | _          |

Исследования показали, что в пределах областей термопереноса его качество неоднородно. Доля перешедшего ворса, как правило, понижается с увеличением давления. Значительно снижается доля перешедшего ворса при

повышении температуры прессования выше 200 °C. Лучшее качество отмечено при давлении  $0.75{\text -}0.8$  кПа. Количество перешедшего ворса тем выше, чем мельче порошок. При параметрах термопереноса T = 200 °C и P = 0.85 кПа доля перешедшего ворса уменьшается до 55 %, подгорает ворс.

Жесткость флокированных материалов возрастает с ростом давления, диаметра фракции порошка и температуры прессования. Результаты исследований показали, что износостойкость материалов падает с увеличением давления термопрессования. Самую высокую износостойкость имеют материалы, полученные с использованием порошка фракций 0.32 и 0.47 мм.

Учитывая комплекс всех потребительских свойств, можно рекомендовать использовать для термопереносных ворсовых материалов порошок фракции 0.19 мм с размером частиц 0.24—0.14 мм. Порошки такой дисперсности обеспечивают наилучшую плотность заполнения. Крупные фракции имеют низкую плотность заполнения и увеличивают жесткость материала. Мелкие фракции имеют плохую сыпучесть.

Для выявления возможных причин нестабильности термопереносных флокированных материалов при их длительном хранении были исследованы температурные характеристики термопластичных порошков, а также термопластичных слоев, которые формируются при различных технологических схемах производства термопереносного материала. Среди причин нестабильности свойств материала во времени, помимо тех, что были рассмотрены в подразд. 3.3.4, возможно также изменение температурных характеристик и физико-химических свойств термопластичного слоя, которое инициируется ИК-облучением при оплавлении. Кроме того, продолжены исследования возможности введения термопластичного порошка в основной клей. Технология и аппаратурное оформление ее в этом случае упрощаются, так как нанесение порошка совмещено с печатью рисунка, исчезают нежелательные дефекты производства, такие как лишний перенос вне контура рисунка [128].

Для решения поставленных вопросов проведены дифференциальнотермический и термогравиметрический анализы клеевых пленок основного клея; клеевых пленок с нанесенными сверху порошками; пленок с введенными в клей порошками в соотношении 70 : 30; а также системы «вискозный ворс – термопластичный слой порошка – основной клей». Свойства использованных порошков указаны в *табл. 3.28*.

Таблица 3.28. **Температурные характеристики термопластичных** порошков и плёнок с термопластичными порошками

| Образец                                                             | Т <sub>пл</sub> , °С | Температура разложения $T_{\text{разл.}}$ при $\Delta G = -10  \%,$ °C | Т <sub>пиков</sub> , °С эндо<br>(-) экзо (+) | Потеря<br>массы<br>ΔG при<br>500 °C,<br>% | Масса эндо-<br>терми-<br>ческих пиков, |
|---------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------|
| 1. Мелкодисперсный ПА порошок                                       | 111                  | 340                                                                    | -403; +440;<br>-460                          | 100                                       | _                                      |
| 2. Крупнодисперсный ПА порошок                                      | 114;<br>170          | 365                                                                    | -403; +440;<br>+500                          | 97                                        | 100                                    |
| 3. Порошок Filtex                                                   | 115                  | 370                                                                    | +370; -415;<br>+425                          | 95                                        | 200                                    |
| 4. Порошок <i>Platamid</i> H <sub>0</sub>                           | 110                  | 368                                                                    | _                                            | 98                                        | _                                      |
| 5. Основной клей,<br>сушка в термошкафу                             | 62                   | 235                                                                    | +173; +284                                   | 100                                       | 6                                      |
| 6. Основной клей,<br>ИК-сушка                                       | 57                   | 238                                                                    | +185; +285                                   | 100                                       | 3                                      |
| 7. Основной клей<br>+мелкодисперсный<br>ПА порошок (напы-<br>ление) | 65                   | 275                                                                    | +65; -113;<br>+205; +315                     | 100                                       | 12                                     |
| 8. Основной клей с введенным мелко-<br>дисперсным ПА по-<br>рошком  | 56                   | 255                                                                    | +195; +310;<br>+383                          | 96                                        | 34                                     |
| 9. Основной клей с напылением порош-<br>ка <i>Griltex</i> EMS       | 124                  | 260                                                                    | +65; -124;<br>-210                           | 98                                        | 6                                      |
| 10. Основной клей с введением <i>Griltex</i> EMS                    | 120                  | 261                                                                    | -120; +280;<br>-340; +400                    | 98                                        | 19                                     |
| 11. Основной клей с напылением <i>Filtex</i>                        | 63                   | 256                                                                    | +175; +285                                   | 100                                       | 23                                     |
| 12. Основной клей с введением <i>Filtex</i>                         | 50                   | 252                                                                    | +63; +165;<br>-270; +425                     | 96                                        | 31                                     |
| 13. Основной клей с напылением <i>Platamid</i> H <sub>0</sub>       | 60                   | 255                                                                    | -182; +270                                   | 100                                       | 24                                     |
| 14. Основной клей с введением <i>Platamid</i> H <sub>0</sub>        | 56                   | 263                                                                    | +167; +275                                   | 90                                        | 32                                     |

| Образец                                                           | Т <sub>пл</sub> ,<br>°С | Температура разложения $T_{\text{разл.}}$ при $\Delta G = -10  \%$ , °C | Т <sub>пиков</sub> , °С эндо<br>(-) экзо (+) | Потеря<br>массы<br>ΔG при<br>500 °C,<br>% | Масса<br>эндо-<br>терми-<br>ческих<br>пиков,<br>мг |
|-------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------------------|
| 15. Система основной клей – крупнодис-<br>персный ПА–ворс         |                         | 240                                                                     | +290; +415;<br>+520                          | 85                                        | _                                                  |
| 16. Система основной клей – мелкодисперсный ПА-ворс               |                         | 242                                                                     | +295; +435                                   | 84                                        | _                                                  |
| 17. Система основной клей – Filtex–ворс                           |                         | 231                                                                     | +290; +403;<br>+500                          | 85                                        | _                                                  |
| 18. Система основной клей – <i>Platamid</i> H <sub>0</sub> – ворс | _                       | 240                                                                     | +300; +405;<br>+520                          | 88                                        | _                                                  |

Анализ термограмм показал, что в температурной характеристике порошков выделены три стадии. На 1-й стадии до 100 °C выделяется физически сорбированная вода, что сопровождается эндотермическим эффектом с температурой примерно 65÷75 °C и происходит плавление. Влажность составля-2-3 %. Наиболее четко плавление проявилось у полиамидных порошков (образцы 1 и 2) и у образцов с использованием Griltex EMS, что свидетельствует о кристаллической структуре этих порошков. Необходимо отметить, что именно при использовании этих видов порошков наблюдалось лучшее качество термопереноса. У остальных образцов пик плавления выражен слабо. Для этих образцов были проведены опыты с различной скоростью нагрева с целью более четко выявить температуру плавления. Однако форма кривой ДТА оставалась прежней. Незначительный эндотермический эффект на кривой ДТА, который находится в одной температурной области при различных скоростях нагрева (2.5; 5; 10 и 20 град/мин), свидетельствует о том, что он характеризует фазовый переход в слабокристаллическом веществе. На 2-й стадии происходит интенсивное разложение, которое сопровождается серией эндо- и экзотермических эффектов в интервале температур от 170 до 460 °C. Необходимо отметить, что величина эндотермических пиков в 1.5-3 раза больше у образцов с введением порошков в клей, чем в случае напыления порошков на поверхность основного клея. Это можно объяснить большим контактом и химическим взаимодействием функциональных групп порошков и клея при введении порошка в клей.

Температура плавления при напылении порошков на несколько градусов выше, чем при перемешивании их с основным клеем. На 3-й стадии происходит сгорание углеродного остатка с интенсивным выделением тепла при температуре около  $500\,^{\circ}\mathrm{C}$ .

Ранее проведённые исследования показали, что при введении порошка в основной клей в соотношении 30 : 70 термоперенос ворса невозможен. Для оценки влияния содержания порошка в клее на качество переноса были приготовлены партии образцов термопереносных материалов с напылением порошков и с перемешиванием их с основным клеем в соотношениях 70 : 30; 50 : 50. Оплавление порошков и сушку клея проводили в ИК-сушилке 65 с. Ворсовые аппликации переводили на трикотажное хлопчатобумажное полотно на термопрессе фирмы *Schenk GmbH Maschinenbau*. Время термопереноса варьировали от 30 до 70 с, температуру – от 170 до 220 °C. Качество термопереноса оценивали органолептически (*табл. 3.29*).

Таблица 3.29. Влияние технологии применения термопластичных порошков на качество термопереноса

| Рид породика                   | Форма введения | Качество термопереноса* |
|--------------------------------|----------------|-------------------------|
| Вид порошка                    | в клей         | (преобладающеее)        |
|                                | Напылением     | ++-                     |
| Filtex                         | 70:30          |                         |
|                                | 50:50          |                         |
|                                | Напылением     | +++                     |
| Griltex EMS                    | 70:30          | ++-                     |
|                                | 50:50          |                         |
|                                | Напылением     | +++                     |
| <i>Platamid</i> H <sub>0</sub> | 70:30          |                         |
|                                | 50:50          |                         |
| Потионичний                    | Напылением     | +++                     |
| Полиамидный мелко-             | 70:30          | ++-                     |
| дисперсный                     | 50:50          | ++-                     |
| Почиомичний                    | Напылением     | ++-                     |
| Полиамидный крупно-            | 70:30          | ++-                     |
| дис-персный                    | 50:50          |                         |

<sup>\*+++</sup> качественный термоперенос;

Результаты таблицы показывают, что наилучшее качество получается при напылении порошка. Однако соотношение 70 : 30 — наиболее перспективное, и в некоторых случаях был получен хороший перенос. Кроме проведения самого процесса термопереноса, необходимо обеспечить высокие эксплуатационные свойства термопереносных картинок. Важно, чтобы пленка клея не трескалась и сохраняла эластичность, особенно при переводе рисунка 170

<sup>++-</sup> неполный перенос рисунка;

<sup>—</sup> термоперенос не осуществлялся.

на трикотажные основы. Для оценки физико-механических свойств были изготовлены клеевые пленки: основного клея (мас. ч.: МБМ–3 – 60; АК–211 – 40; антивспениватель – 2; NH<sub>4</sub>OH; ДЭГ–1 – 8; глицерин – 10), высушенные в ИК–су-шилке и в термошкафу при температуре 100 °C с термофиксацией 5 мин при 140 °C; пленки с введенными в клей порошками в соотношении 70 : 30 и высушенные в ИК-сушилке 65 с и термошкафу (при температуре 170 °C для полиамидного порошка и 120 °C – для Griltex EMS).

Данные *табл.* 3.30 показывают, что плёнки без порошков имеют бо́льшую прочность и эластичность, чем пленки с порошками. Очевидно, что образцы, высушенные в термошкафу, более прочные и эластичные, чем высушенные в ИК-сушилке. Это можно объяснить тем, что нарастание прочности (динамика процессов структурирования) происходит медленнее после ИК-облучения, чем после 15-минутной тепловой обработки в термошкафу [129]. Наиболее важным представляется тот факт, что снижение эластичности обусловлено в большей степени природой порошка, чем способом сушкитермофиксации. Эластичность в данном случае является доминирующим и предпочтительным свойством, что позволяет рекомендовать ИК-сушку как более производительную (в 10–15 раз) [130], [131].

Таблица 3.30. Физико-механические характеристики клеевых пленок

| То:<br>Образец щин<br>мм                   |       | Площадь поперечного сечения образца, $\cdot 10^6$ м <sup>2</sup> | Раз-<br>рывная<br>нагруз-<br>ка, Н | Относи-<br>тельное<br>разрывное<br>удлине-<br>ние, % | Когези-<br>онная<br>проч-<br>ность,<br>МПа |
|--------------------------------------------|-------|------------------------------------------------------------------|------------------------------------|------------------------------------------------------|--------------------------------------------|
| 1. Клей основной (термошкаф)               | 0.058 | 0.290                                                            | 8.0                                | 723                                                  | 27.6                                       |
| 2. Клей основной (ИК-сушилка)              | 0.083 | 0.420                                                            | 6.9                                | 613                                                  | 16.4                                       |
| 3. Клей с ПА-<br>порошком (тер-<br>мошкаф) | 0.227 | 1.135                                                            | 2.1                                | 230                                                  | 1.9                                        |
| 4. Клей с ПА-<br>порошком (ИК–сушка)       | 0.333 | 1.665                                                            | 2.1                                | 177                                                  | 1.3                                        |
| 5. Клей с <i>Griltex</i> (термошкаф)       | 0.317 | 1.585                                                            | 4.1                                | 613                                                  | 2.6                                        |
| 6. Клей с <i>Griltex</i> (ИК–сушилка)      | 0.367 | 1.835                                                            | 3.9                                | 560                                                  | 2.1                                        |

Результаты комплексных исследований клеевых композиций, термопластичных порошков и технологии создания термопереносного флокированного материала нашли частичное отражение в патенте [117]. В дальнейшем проводились исследования применения в качестве подложки для термопереносного материала прозрачных полимерных плёнок.

# 3.4. Исследование эксплуатационных характеристик текстильных электрофлокированных материалов с локальным нанесением ворса

### 3.4.1. Оценка износостойкости текстильных материалов с локальным нанесением ворса

В настоящее время не существует стандартов на текстильные материалы с флокированными рисунками, поэтому необходимо правильно выбрать показатели качества для этого вида материалов, разработать методы их оценки и определить уровень нормативных требований.

Автором совместно с Г. М. Андросовой проведены исследования по выбору метода оценки износостойкости одежных электрофлокированных материалов, обеспечивающего достоверные результаты. Исследования проводили на приборах ИТ–3М и Виртестер FF–21.

Исследованиям подвергался хлопчатобумажный трикотаж со сплошным ворсовым покрытием, флокированный вискозным ворсом длиной  $0.5\,\mathrm{mm}$ , линейной плотностью  $0.31\,\mathrm{tekc}$ , с использованием водного акрилового клея на основе МБМ-3, АК $-211\,\mathrm{u}$  ДЭГ-1. Изучено влияние давления прижима образца к абразиву на износостойкость, а также на объективность оценки. С этой целью проведена статистическая обработка результатов испытаний. Результаты приведены в maбn.~3.31.

Таблица 3.31. Влияние давления на образец на разброс результатов при оценке стойкости к истиранию

|        |                                | Коэффициент вариа-<br>ции по износостойко- |          | Число необходимых     |          |
|--------|--------------------------------|--------------------------------------------|----------|-----------------------|----------|
| Прибор |                                |                                            |          | испытаний для гаран-  |          |
|        | Давление абразива              | сти, %, при истирании                      |          | тийной ошибки не бо-  |          |
|        | на образец, Па·10 <sup>4</sup> |                                            |          | лее 5 % при истирании |          |
|        | _                              | в сухом                                    | в мокром | в сухом               | в мокром |
|        |                                | виде                                       | виде     | виде                  | виде     |
| ИТ–3М  | 2.16                           | 6.6                                        | 5.5      | 8                     | 5        |
|        | 3.24                           | 6.4                                        | 5.5      | 7                     | 9        |
|        | 4.32                           | 6.4                                        | 7.3      | 7                     | 9        |
|        | 5.40                           | 7.1                                        | 7.1      | 9                     | 19       |
|        | 6.48                           | 10.7                                       | 11.3     | 9                     | 31       |
| FF-21  | 0.76                           | 1.1                                        | 3.8      | 1                     | 3        |
|        | 1.17                           | 1.5                                        | 6.1      | 1                     | 6        |
|        | 1.56                           | 3.5                                        | 9.3      | 2                     | 14       |
|        | 1.95                           | 4.8                                        | 12.1     | 4                     | 25       |

Полученные данные позволяют выбрать оптимальное давление абразива на образец при испытаниях электрофлокированных материалов на истира-

ние: на приборе ИТ-3М  $-3.24\cdot10^4$  или  $4.32\cdot10^4$  Па (соответственно нагрузка противовеса 1.5 и 2.0 кгс), на приборе Виртестер FF $-21-1.17\cdot10^4$  Па и  $1.56\cdot10^4$  Па (соответственно 1.5 и 2.0 кгс). Для определения зависимости между числом

циклов или временем истирания и давлением на образец p можно воспользоваться формулой Столла [118]:

$$n = ap^b$$
,

где a – коэффициент, зависящий от волокнистого состава изделия;

b – постоянная, зависящая от типа изделия.

Для построения теоретических зависимостей стойкости к истиранию от давления на образец рассчитаны неизвестные коэффициенты (*табл. 3.32*) [119].

Таблица 3.32. Значения коэффициентов в формуле Столла для расчета

#### Прибор bВид истирания $3.25 \cdot 10^{11}$ cyxoe -2.21 FF-21 $1.72 \cdot 10^{11}$ -2.33 мокрое $2.89 \cdot 10^{11}$ -2.01 cyxoe ИТ-3М $1.70 \cdot 10^8$ -1.39 мокрое

износостойкости электрофлокированного трикотажа

*Puc. 3.35* показывает хорошую согласованность между теоретическими и экспериментальными результатами.

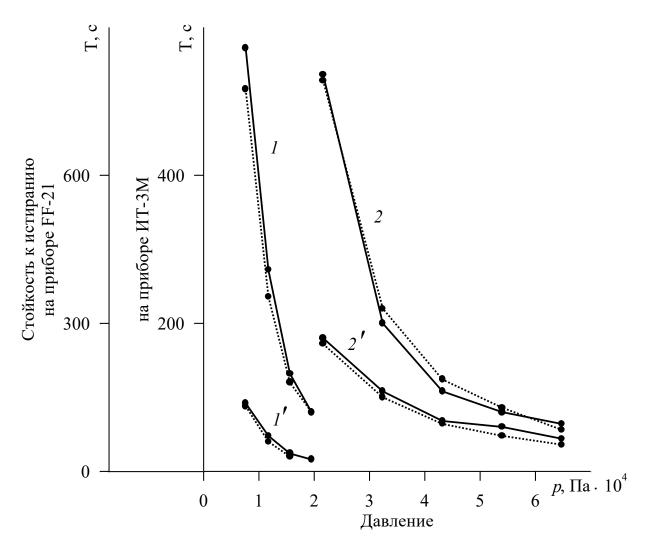



Рис. 3.35. Изменение стойкости к истиранию в зависимости от нагрузки на истирающий орган:

1, 1' – на приборе FF–21; 1, 2 – в сухом виде;

2, 2' – на приборе ИТ–3М; I', 2' – в мокром виде;

----- теоретическая кривая; — экспериментальная кривая

### 3.4.2. Влияние параметров ворсового рисунка на свойства электрофлокированного материала

Для материалов с флокированной отделкой большое значение имеет относительная площадь, занятая ворсовым рисунком, а также геометрия самого рисунка. Для оценки влияния этих параметров разработаны эскизы клеепечатных шаблонов с долей заполнения площади рисунком 0.2; 0.4; 0.6; 0.8; 1.0. При разработке эскизов добивались равномерного расположения элементов рисунка по площади. Рисунки содержали полосы шириной от 0.1 до 1.2 см, треугольники с углами от 5° до 160°, кольца шириной от 0.2 до 1.0 см, круги, квадраты и др. По разработанным эскизам изготовили шаблоны и наработали образцы флокированного трикотажного полотна с использованием вискозно-

го ворса длиной 0.5 мм, линейной плотностью 0.31 текс. Было определено влияние параметров рисунка на воздухопроницаемость, жесткость, драпируемость и стойкость к истиранию (*табл.* 3.33).

Таблица 3.33. Изменение свойств флокированного материала в зависимости

| от доли флокированной поверхности ( $\mathbf{K}_{3a}$ | п.) | ) |
|-------------------------------------------------------|-----|---|
|-------------------------------------------------------|-----|---|

|                           | Изменение характеристик в процентах по сравне- |      |      |      |                      |  |
|---------------------------|------------------------------------------------|------|------|------|----------------------|--|
| Характеристика материала  | на нию с нефлокированным материалом при        |      |      |      | при К <sub>зап</sub> |  |
|                           | 00.2                                           | 00.4 | 00.6 | 00.8 | 11.0                 |  |
| Воздухопроницаемость      | -34                                            | -43  | -47  | -65  | -97                  |  |
| Жесткость                 | +3                                             | +69  | +74  | +115 | +208                 |  |
| Драпируемость             | -11                                            | -25  | -18  | -25  | -32                  |  |
| Относительная потеря мас- |                                                |      |      |      |                      |  |
| сы ворса при истирании:   |                                                |      |      |      |                      |  |
| в сухом виде              | +39                                            | +20  | +28  | +31  | +31                  |  |
| в мокром виде             | +51                                            | +31  | +40  | +34  | +38                  |  |

Полученные данные показали, что воздухопроницаемость флокированного материала в значительной степени определяется проницаемостью участков, свободных от рисунка. Большое влияние коэффициент заполнения оказывает на жесткость материала. Кроме того, на жесткость и драпируемость влияет также структура рисунка. Мелкий, равномерно распределенный по площади рисунок незначительно увеличивает жесткость и драпируемость. Материал с крупным узором более жесткий и менее драпирующийся. Рисунок в полоску существенно меняет свойства материала в одном направлении [132].

Исследования стойкости к истиранию проводили на приборе FF–21, так как площадь истирания на нем ( $150 \times 150$ ) мм² позволяет оценить влияние рисунка. Для исследований выбрана нагрузка 2 кгс (давление  $1.56 \cdot 10^4$  Па), при которой осуществляется интенсивное недлительное истирание, время испытания при сухом истирании – 10 мин, при мокром – 5 мин. Оценку проводили по относительной потере массы ворса ( $\Delta m$ ) с единицы площади флокированной поверхности:

$$\Delta m = \frac{m}{M} \cdot 100\%,$$

где m – потеря массы ворса после истирания, г/м<sup>2</sup>;

M – общая масса ворса на образце,  $\Gamma/M^2$ .

Массу ворса на поверхности образца рассчитывали по формуле

$$M = \overline{M} \cdot S \cdot K_{aan}$$

где  $\overline{M}$  — средний привес ворса на 1 м² при  $K_{\text{зап.}} = 1$  (флокирование через сетку); S — площадь истираемой поверхности, м² ( $S = 0.0225 \text{ м}^2$ );

 $K_{\text{зап}}$  – коэффициент заполнения площади рисунка ворсом.

Данные *табл. 3.33* показывают, что стойкость к истиранию практически не зависит от доли заполнения основы флокированным рисунком.

В ходе испытаний стойкости к истиранию было оценено влияние на нее формы и размеров элементов флокированного рисунка. В первую очередь истираются тонкие полосы шириной до 2 мм, полосы шириной более 5 мм истираются одновременно по всей поверхности без какой-либо последовательности (рис. 3.36). При истирании рисунка с треугольниками почти сразу и одновременно истираются углы 5° и 10°, остальные более раннему дефекту не подвергаются. Конфигурация элементов рисунка в виде кругов или квадратов не оказывает влияния на стойкость к истиранию флокированных материалов.

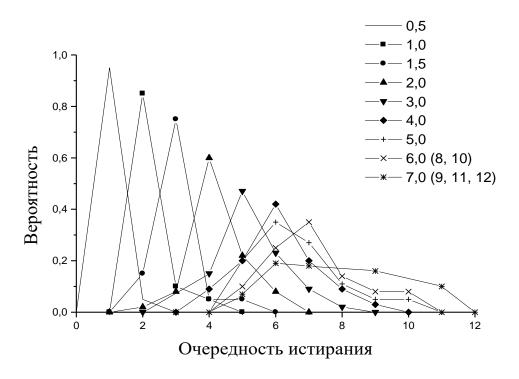



Рис. 3.36. Вероятность очередности истирания флокированного рисунка в зависимости от ширины линий

Проведенные исследования дают основание рекомендовать для материалов с флокированной отделкой рисунки с коэффициентом заполнения площади основы до 0.6–0.7, при этом лучше избегать тонких полос (2 мм и менее) и углов менее 10 градусов.

Теоретическое моделирование влияния доли площади материала, заполненной флокированным рисунком, на механические и физические характеристики материалов с локальным нанесением ворса проведено в гл. 5.

### 3.4.3. Определение режима стирки материалов с флокированной отделкой

В настоящее время для электрофлокированных материалов не существует стандартных методов исследования их поведения при стирке и норм изменения их качества в процессе эксплуатации. Изменение свойств текстильных материалов при стирке происходит под воздействием воды, тепла, моющих средств, при этом имеют место многократные сложные и взаимосвязанные деформации скручивания, растяжения, сжатия, изгиба, мокрого трения между текстильными поверхностями и рабочими органами стиральных машин. Сначала изменяются поверхностная структура, цвет и другие эффекты отделки, что ухудшает эстетические свойства, а затем изменяются прочностные характеристики материалов. Разрушение ворсового слоя электрофлокированных материалов необратимо ухудшает их эстетические свойства и резко сокращает долговечность изделий в целом. Поэтому наряду с изучением влияния стирки на изменение массы, толщины, упругопластических свойств, стойкости к истиранию, воздухопроницаемости флокированных материалов была проведена экспертная оценка их внешнего вида. В качестве основы использовали плательно-блузочные ткани и трикотажные полотна. Все материалы флокировали в одинаковых условиях по всей поверхности вискозным ворсом длиной 0.5 мм и линейной плотностью 0.31 текс с применением воднодисперсионного акрилового клея. Механическое и тепловое воздействия при стирке являются решающими факторами изменения многих свойств обрабатываемых изделий, поэтому основное внимание было уделено продолжительности и интенсивности механического и теплового воздействия.

Параметры мокрой обработки изменялись в следующих пределах:

| Стирка:     | температура воды, °С             | .30-100 |
|-------------|----------------------------------|---------|
|             | продолжительность обработки, мин | .5–30   |
| Полоскание: | температура воды, °С             | .15–30  |
|             | количество циклов                | 2–3     |
|             | продолжительность цикла, мин     | 2–3     |

Отжим осуществляли вручную валиком. При этом образцы вкладывали между слоями хлопчатобумажной ткани и прокатывали валиком в продольном направлении. Сушили при комнатной температуре. О влиянии параметров стирки судили по изменению массы образцов после трех последовательных одинаковых стирок.

Экспериментальные данные (*puc. 3.37*) показали, что при повышении температуры стирки, особенно с увеличением длительности теплового воз-

действия, увеличивается потеря массы. Это можно объяснить более сильным набуханием клеевого слоя и ослаблением силы адгезионного сцепления клея с ворсом, за счет чего облегчается процесс вырывания ворсинок при механическом воздействии на материал.

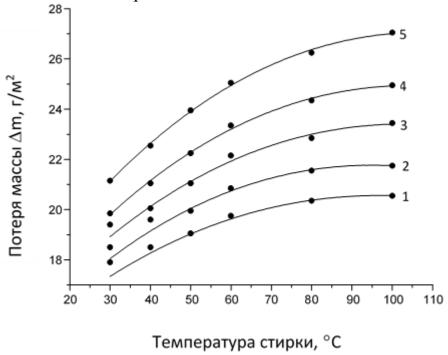



Рис. 3.37. Влияние температуры стирки на потерю массы электрофлокированных материалов

Длительность операции стирки не оказывает существенного влияния на потерю массы. Однако если рассматривать изменение массы за определенное время обработки при разном времени одного цикла стирки, то общие потери меньше при более длительных стирках вследствие уменьшения их количества, а следовательно за счет уменьшения механического воздействия при стирках и сокращения числа полосканий и отжимов.

Исследование влияния температуры полоскания показало, что минимальные потери ворса наблюдаются при 20–25 °C. Изменение температуры полоскания приводит к уменьшению плотности ворсового покрова, что происходит вследствие значительного увеличения динамической вязкости раствора при понижении температуры или увеличении степени набухания клеевого слоя при повышении температуры полоскания. Время полоскания практически не влияет на потерю массы. Увеличение количества циклов отрицательно сказывается на плотности ворсового покрова.

Установлено, что температура, интенсивность и количество циклов мокрой обработки оказывают существенное влияние на изменение свойств электрофлокированных материалов. Изучено влияние на свойства материалов совместных и раздельных операций стирки, которое определялось соответст-178

венно прямым и косвенным методами. Косвенный метод заключается в том, что одновременно обрабатывается несколько партий образцов, причем первая партия подвергается всем операциям стирки, а другие партии — без тех операций, воздействие которых необходимо определить. Такая методика позволяет выявить влияние совместного и раздельного воздействия операций стирки при одних и тех же параметрах технологического режима и повысить достоверность получаемых результатов. Результат влияния отдельной операции определялся разницей значений исследуемых свойств партии материалов, подвергшихся полному циклу стирки, и партии материалов, не подвергавшихся влиянию данной операции.

Анализ результатов исследований, приведенных в *табл. 3.34*, показал, что каждая из операций стирки оказывает существенное влияние на потерю массы электрофлокированных материалов. Основное влияние на потерю массы флокированных материалов оказывает мокрое трение. Потери массы собственно стирки составляют около 1/5 всех потерь. Наибольшие потери (около 50 %) отмечены от операций полоскания, что объясняется, вероятно, увеличением коэффициента трения в результате отсутствия моющих средств в растворе для полоскания.

Таблица 3.34. Влияние операций стирки на потерю массы электрофлокированных материалов

| Наименование операции | Потеря массы, %, от общей потери массы |
|-----------------------|----------------------------------------|
| Стирка                | 21–22                                  |
| Полоскание,           | 54–55                                  |
| В том числе:          |                                        |
| первое                | 19–20                                  |
| второе                | 18–19                                  |
| третье                | 16–17                                  |
| Отжим                 | 23–24                                  |
| В том числе:          |                                        |
| первый промежуточный  | 2–3                                    |
| второй промежуточный  | 3–4                                    |
| третий промежуточный  | 4–5                                    |
| Окончательный         | 12–14                                  |

Сущность процесса отжима заключается в том, что под действием внешних сил происходит деформация материала и находящаяся в нем жидкость, протекает через поры, выходит на открытую поверхность и удаляется. Основными факторами износа материалов при отжиме являются их сжатие и истирание, приводящие к потере примерно четверти массы электрофлокированных материалов.

На основании полученных результатов следует рекомендовать проводить стирку материалов с флокированной отделкой при температуре до 40 °C.

Температура полоскания должна находиться в пределах 20–25 °C. При этом следует избегать сильных механических и царапающих воздействий, то есть применять щадящий режим в стиральной машине и не использовать щетки при ручной стирке. Кроме этого, рекомендуется выворачивать изделие на изнаночную сторону, чтобы избежать соприкосновения с ворсовой поверхностью. Не нужно сильно выкручивать изделия, лучше легко отжать, обернув, например, полотенцем.

Чтобы избежать заминания ворса, происходящего при глажении, гладить нужно без нажима с изнаночной стороны.

Одной из важнейших проблем текстильных материалов с отделкой является ухудшение внешнего вида в процессе носки и стирки, поэтому проводились исследования по определению количества стирок, выдерживаемых электрофлокированными материалами. Стирали образцы с учетом разработанных рекомендаций по режиму обработки. Полученные результаты (рис. 3.38) показывают, что при предложенном режиме исследуемые материалы выдерживают 25–30 стирок (в зависимости от используемой основы). При сравнении с образцами одной из ведущих фирм в области флокирования Maag Schenk (Германия) можно отметить соответствие исследованных отечественных материалов уровню зарубежных образцов.

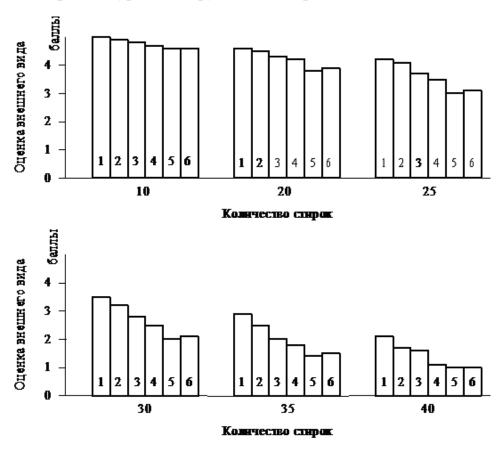



Рис. 3.38. Исследование стойкости к стиркам электрофлокированных материалов:

основа: 1, 2 – ткань блузочная; клей: 1, 3, 5 – непенный; 3, 4 – ткань креп; 2, 4 – вспененный;

5 – трикотажное полотно;

6 – образец фирмы Maag Schenk на трикотажной основе, клей непенный

Для оценки влияния стирки на физико-механические свойства флокированных материалов проводили их стирку в бытовой стиральной машине «Сибирь» при следующем режиме:

Образцы полоскали дважды по 2 мин при температуре  $(20 \pm 4)^{\circ}$ С со сменой воды в баке стиральной машины. Отжимали в центрифуге в течение одной минуты, затем сушили при комнатной температуре в подвешенном состоянии 12 ч. Гладили образцы утюгом массой 1.2 кг при температуре 120  $\pm$  15 °C без нажима по три движения вперед и назад, сначала с изнаночной, затем с лицевой стороны.

Оценка внешнего вида материалов после стирки (maбл.~3.35) проводилась группой из пяти экспертов по пятибалльной шкале от 1 до 5, составленной на основании предварительного эксперимента. Результаты исследований показали, что при машинной обработке товарный вид сохраняется до 5-10 стирок, в зависимости от волокнистого состава и структуры основы.

Таблица 3.35. **Изменение внешнего вида электрофлокированных** материалов после стирки

| Электрофло- |     | Оценка внешнего вида в баллах после числа |     |          |       |     |     |  |  |  |  |
|-------------|-----|-------------------------------------------|-----|----------|-------|-----|-----|--|--|--|--|
| кированный  |     |                                           | I   | циклов с | тирок |     |     |  |  |  |  |
| материал    | 1   | 3                                         | 5   | 7        | 110   | 112 | 115 |  |  |  |  |
| 1           | 4.8 | 4.4                                       | 4.0 | 3.6      | 3.2   | 2.8 | 2.3 |  |  |  |  |
| 2           | 3.8 | 3.4                                       | 2.9 | 2.4      | 1.9   | 1.5 | 1.0 |  |  |  |  |
| 3           | 4.7 | 4.3                                       | 3.9 | 3.6      | 3.0   | 2.5 | 1.6 |  |  |  |  |
| 4           | 4.1 | 3.8                                       | 3.3 | 2.9      | 2.2   | 1.8 | 1.4 |  |  |  |  |
| 5           | 4.6 | 4.2                                       | 3.8 | 3.4      | 2.8   | 2.5 | 1.9 |  |  |  |  |
| 6           | 4.4 | 4.0                                       | 3.6 | 3.1      | 2.4   | 1.9 | 1.1 |  |  |  |  |

С увеличением количества стирок плотность ворсового покрова уменьшается, появляются дефекты. Наибольшей устойчивостью к стиркам обладают материалы с основой из синтетического трикотажа (образец 1), блузочной капроновой ткани (образец 5) и хлопчатобумажного крепа (образец 4), самой низкой стойкостью к стиркам — материал на основе хлопчатобумажного трикотажа. Наибольшие изменения массы и толщины флокированных материалов наблюдается при первых пяти стирках [133], [134], при дальнейших стирках значения этих параметров изменяются незначительно. Исследования показали, что наибольшую долю в изменении массы составляют потери ворса (*табл. 3.36*), что приводит к ухудшению внешнего вида материала.

Таблица 3.36. Потеря массы флокированных материалов при стирке

| Элемент структуры | Потеря массы, % (от общей потери массы) |
|-------------------|-----------------------------------------|
| Основа            | 3–8                                     |
| Клей              | 22–32                                   |
| Ворс              | 60–5                                    |

Характер изменения упругопластических свойств электрофлокированных материалов после стирки показан на примере полной деформации сжатия (рис. 3.39).

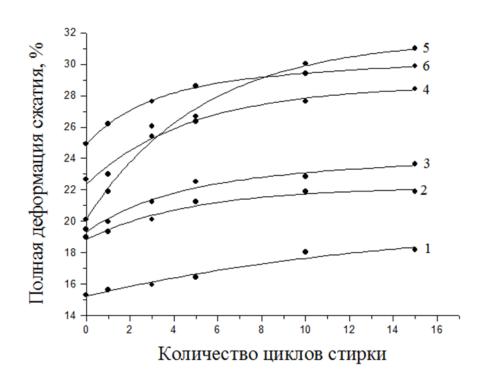



Рис 3.39. Влияние влажно-тепловой обработки на полную деформацию сжатия электрофлокированных материалов

Наибольшее ее увеличение характерно для первых пяти стирок, когда еще достаточно высока плотность ворсового покрова и расположение ворсинок преимущественно вертикальное. С увеличением количества стирок уменьшается жесткость и повышается воздухопроницаемость материалов, 182

причем наиболее интенсивное изменение наблюдается при трех первых стирках. Стойкость к истиранию исследуемых материалов определяли как процентное соотношение между массой стершегося ворса и массой ворса до истирания на единицу поверхностной плотности. Износостойкость флокированных материалов заметно ухудшается после 10 циклов стирки (*табл. 3.37*).

Таблица 3.37. Влияние стирки на износостойкость флокированных материалов

| Электрофло- | Стойі  | Стойкость к истиранию, % после числа циклов стирок |    |    |    |     |     |     |  |  |
|-------------|--------|----------------------------------------------------|----|----|----|-----|-----|-----|--|--|
| кированный  | без    | 1                                                  | 3  | 5  | 7  | 110 | 112 | 115 |  |  |
| материал    | стирок | 1                                                  | 3  | 3  | /  | 110 | 112 | 113 |  |  |
| 1           | 13     | 14                                                 | 15 | 13 | 17 | 17  | 20  | 27  |  |  |
| 2           | 20     | 18                                                 | 21 | 20 | 22 | 25  | 32  | 48  |  |  |
| 3           | 15     | 17                                                 | 14 | 16 | 20 | 20  | 25  | 33  |  |  |
| 4           | 18     | 18                                                 | 19 | 18 | 20 | 25  | 28  | 35  |  |  |
| 5           | 10     | 10                                                 | 10 | 12 | 11 | 15  | 17  | 22  |  |  |
| 6           | 18     | 16                                                 | 16 | 20 | 24 | 28  | 35  | 42  |  |  |

Таким образом, разработаны рекомендации по стирке флокированного текстиля. Стирать материалы с флокированной отделкой следует при температуре 40 °C, полоскать – при 20–25 °, избегая сильных механических и царапающих воздействий. Гладить нужно без нажима с изнаночной стороны. При предложенном режиме флокированные материалы выдерживают 20–30 стирок (в зависимости от вида основы).

#### 3.5. Исследование газовыделений при сушке и термофиксации акриловых латексных клеев

По сравнению с клеями на органических растворителях, воднодисперсионные клеи несут гораздо меньшую экологическую нагрузку. При сушке водных клеев удаляется преимущественно водная фаза. Однако эмиссия токсичных веществ из клеевого слоя в окружающую среду возможна за счёт того, что водные дисперсии содержат свободные мономеры (от сотых до десятых долей процента). С целью определить состав и уровень газовыделений связующего в процессе его сушки и термофиксации (соответственно 5 мин при температуре 90 °C и 10 мин при температуре 150 °C) проведен их газохроматографический анализ.

В газовыделениях связующего обнаружены ацетон, метилакрилат, метилметакрилат, бутилакрилат, этиловый спирт, н-бутиловый спирт, толуол, этилбензол ( $puc.\ 3.40$ ). Наличие в газовыделениях этилового и н-бутилового спиртов было подтверждено методом реакционной газовой хроматографии.

После хроматографирования градуировочной смеси вычисляли среднее арифметическое значение высот пиков и определяли градуировочный коэффициент как отношение концентрации C к высоте пика в миллиметрах. Количественные характеристики обнаруженных вредных веществ в газовыделениях акриловой клеевой композиции определяли при сушке навески клея в заданном режиме в герметичном эксикаторе объемом  $0.01 \, \mathrm{m}^3$ , помещенном в прогретые до требуемой температуры термокамеры. Для этого на взвешенное предметное стекло наносили клей, взвешивали на аналитических весах стекло с клеем и закладывали его в эксикатор.

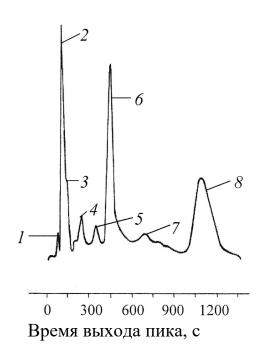



Рис. 3.40. Хроматограмма газовыделений из акрилового воднодисперсионного клея:

1 – ацетон; 2 – этанол; 3 – метилакрилат; 4 – метиметакрилат; 5 – толуол; 6 – н-бутанол; 7 – этилбензол; 8 – бутилакрилат

В первой камере эксикатор с образцом выдерживали 5 мин при 90 °C, затем перемещали во вторую термокамеру и выдерживали 10 мин при 150 °C. Пробу для анализа отбирали в конце каждого срока выдержки медицинскими шприцами вместимостью 50 см<sup>3</sup> и через кран-дозатор вводили в хроматограф. Суммарные потери массы образцов при термообработке, определенные весовым методом, составили 54,2 %. Значения концентраций вредных веществ в газовыделениях акриловой клеевой композиции при термообработке в заданном режиме представлены в *табл. 3.38* [135].

Полученные результаты позволяют, зная расход связующего при флокировании, рассчитать теоретическое количество выделений каждого из ве-

ществ в воздух рабочей зоны в течение смены, а также рассчитать необходимое для воздухообмена количество приточного воздуха. При одновременном попадании в воздух нескольких газообразных продуктов количество вентилируемого воздуха рассчитывают по веществу, имеющему наименьшее значение ПДК. Для теоретического расчета воздухообмена L (м $^3$ /мин) можно воспользоваться формулой

$$L = \frac{M_{\kappa} \, \mathbf{y}}{\Pi \mathbf{\Pi} \mathbf{K} - \mathbf{K}_1},$$

где  $M_{\kappa}$  – расход связующего при флокировании, г/мин;

У – удельное количество выделений наиболее вредного вещества, мг/г клея;

ПДК и  $K_1$  — соответственно предельно-допустимая концентрация данного вредного вещества и концентрация этого вещества в приточном воздухе,  $\text{мг/м}^3$ .

Таблица 3.38. Газообразные выделения при термообработке водного акрилового клея

| Режим термо- Удельные количества газообразных выделений, мг/г кл |      |        |        |        |       |       |       | лея    |
|------------------------------------------------------------------|------|--------|--------|--------|-------|-------|-------|--------|
| обработки                                                        | аце- | этило- | метил- | метил- | толу- | н-бу- | этил- | бутил- |
|                                                                  | тон  | вый    | акри-  | метак- | ОЛ    | тило- | бен-  | акри-  |
|                                                                  |      | спирт  | лат    | рилат  |       | вый   | зол   | лат    |
|                                                                  |      |        |        |        |       | спирт |       |        |
| Температура 90°С, выдержка 5 мин                                 | 0,05 | 0,24   | 0,12   | 0,06   | 0,03  | 0,46  | 0,01  | 0,34   |
| Температура<br>150°С,<br>выдержка<br>10 мин                      | 0,05 | 0,31   | 0,16   | 0,09   | 0,06  | 0,63  | 0,01  | 0,67   |

С целью установления фактического содержания вредных выделений был также проведен количественный хроматографический анализ воздуха в помещении, где работала лабораторная флокирующая установка. Отбор проб осуществляли после двух часов работы установки на расстоянии 0,5 м от сушильной камеры в течение 10 мин. Фактически обнаруженные концентрации вредных примесей в воздухе рабочей зоны не превышали расчетных концентраций  $K_p$ , рассчитанных по формуле:  $K_p = M_\kappa \, Y/V_n$ , где  $V_n$  – объем производственного помещения,  $M^3$ .

#### Глава 4. ИССЛЕДОВАНИЯ ПО СОЗДАНИЮ МНОГОЦВЕТНОГО ЭФФЕКТА ПРИ ЛОКАЛЬНОМ НАНЕСЕНИИ ВОРСА

### 4.1. Оценка разрешающей способности печати ворсом и выработка рекомендаций для изготовления шаблонов

Наряду с плотностью ворса четкость контуров является важнейшей характеристикой флокированных материалов с рисунками. Эта характеристика особенно важна для многоцветных рисунков, когда последовательно наносимый ворс разных цветов должен создать единую композицию.

Для оценки разрешающей способности определяли минимальные размеры элементов рисунка, которые можно четко выполнить из ворса.

Разрешающая способность прямой печати ворсом зависит от нанесения клея и ворса. Печать клеем аналогична печати красками, но накладывает определенные ограничения на разрешающую способность, связанные с невысокой жизнеспособностью клея и забиванием печатных элементов шаблона. На разрешающую способность термопереноса влияет также дисперсность термопластичного слоя.

Разрешающую способность, зависящую от печати клеем, автор исследовала, используя сетчатые шаблоны с рисунком в виде набора кругов и квадратов различных размеров (1–80 мм диаметром или стороной) и полосок (параллельных и перпендикулярных к ракле) шириной 0,2–12 мм.

Печатали на поверхности хлопчатобумажного, полиэфирного трикотажа и капроновой ткани «лаке» (поверхностной плотностью соответственно 185, 275 и 70 г/м $^2$ ), затем исследовали влияние длины ворса и вязкости клея на четкость (резкость), а также разрешающую способность печати.

Установлено, что на четкость печати влияет главным образом взаимосвязь реологических свойств клея и свойств материала (пористости, гигроскопичности, волокнистого состава). Выяснено, что после флокирования сплошные, без разрывов, ворсовые полоски получались лишь на отпечатках, сделанных при ширине полоски на шаблоне не менее 0,3–0,5 мм. В этом состоит существенное отличие печати ворсом от краскопечати, поскольку размеры клеевого отпечатка должны быть достаточными для внедрения ворса. Для оценки разрешающей способности сравнивали между собой размеры

элементов рисунка на шаблоне и на флокированном образце. Вязкость клея выбрали оптимальную по предварительным исследованиям.

Данные замеров для образцов с различной длиной ворса, приведенные в *табл. 4.1*, показывают, что линейные размеры элементов рисунка изменяются после флокирования на длину использованного ворса [26]. Таким образом, на стадии эскизов для шаблонов необходимо учитывать, каким ворсом будет выполняться рисунок.

Таблица 4.1. Линейные размеры рисунка на шаблоне и на флокированном

#### образце

| Длина ворса, мм | Разница между лимерами рисунка на флокированном ф | шаблоне и на | Рекомендуемые мини-<br>мальные размеры элемен-<br>тов рисунка на шаблоне, |         |  |
|-----------------|---------------------------------------------------|--------------|---------------------------------------------------------------------------|---------|--|
|                 | 3.7                                               | 37           | MM                                                                        |         |  |
|                 | Увеличение пе-                                    | Уменьшение   | Печатные                                                                  | Пробелы |  |
|                 | чатных элементов                                  | пробелов     | элементы                                                                  | •       |  |
| 0,3             | 0,2                                               | 0,3          | 0,3-0,4                                                                   | 0,7-0,8 |  |
| 0,5             | 0,5                                               | 0,6          | 0,8                                                                       | 1       |  |
| 1,5             | 1,6                                               | 1,6          | 1,7                                                                       | 2–2,2   |  |
| 2               | 2                                                 | 2,1          | 1,1                                                                       | 3–3,2   |  |
| 3               | 3,3                                               | 3,2          | 2,5                                                                       | 4-4,2   |  |

При многоцветной печати, когда клей наносят на всю площадь рисунка, а рисунок создают с помощью шаблонов, четкость и разрешающая способность определяются операцией флокирования. Оценка влияния технологических параметров на четкость ворсовых узоров проводились на лабораторных установках для флокирования способами «снизу — вверх» и «сверху — вниз». На установке (рис. 4.1) ворсовые узоры создавались способом «сверху — вниз». Здесь ворс 1 находился на верхнем электроде 2, представляющем собой сито. Во время флокирования сито совершало колебательное движение в горизонтальной плоскости. На нижнем электроде 3 находился материал с клеем 4. Между основой и высоковольтным электродом располагали шаблон 5 с отверстиями для ворса 6.

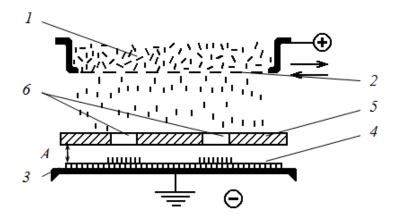



Рис. 4.1. Схема лабораторной установки для нанесения флокированных рисунков способом «сверху – вниз»

При флокировании «снизу — вверх» на верхнем заземленном электроде укреплялась основа с нанесенным на нее клеем. Ворс находился на нижнем электроде, подключенном к источнику высокого напряжения. Между электродами располагали шаблон с прорезями или отверстиями в виде рисунка, например в виде кольца. Под действием сил электростатического поля ворсинки, получающие заряд при контакте с высоковольтным электродом, направлялись к заземленному электроду. На основу они могли попасть только через отверстия в шаблоне. Закрепляясь в клеевом слое, ворс образовывал рисунок, соответствующий рисунку шаблона.

Четкость ворсовых элементов зависела в первую очередь от расстояния между основой и шаблоном A (puc. 4.1) [136]. Получены диаграммы распределения плотности нанесения ворса для A=1...54 мм. Оптимальное расстояние A можно определить по коэффициенту заполнения диаграммы: чем он больше, тем четче рисунок. При увеличении A рисунок становился менее четким. При использовании ворса меньшей длины расстояние A более существенно влияло на четкость рисунка: для волокон длиной 3 мм  $A_{\text{опт}}=2$  мм (puc. 4.2), для волокон длиной 0,5 мм  $A_{\text{опт}}=1$  мм.

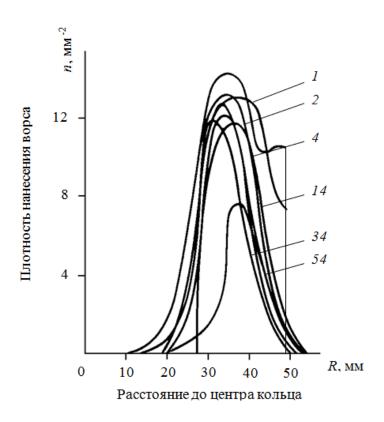



Рис. 4.2. Распределение плотности нанесения («снизу – вверх») капронового ворса длиной 3 мм при различных расстояниях между флокируемой основой и диэлектрическим шаблоном (номер кривой численно равен расстоянию *A*, мм)

Диаграмма на рис. 4.2 получена при флокировании через диэлектрический шаблон. Для выяснения влияния электрических свойств материала шаблона на распределение ворса эти диаграммы сравнивали с диаграммами, полученными при исследовании образцов, флокированных через металлические заземленный и незаземленный шаблоны. Установлено, что наибольший размыв рисунка, в особенности при A > 10 мм, давал металлический шаблон с заземлением, наименьший размыв и лучшую ориентацию волокон — изолированный металлический шаблон. Последний выбран для исследований по нанесению ворсового узора способом «сверху — вниз». Общий характер кривых в этом случае сохранялся (рис. 4.3). Ворс наносился 15 с. Сравнивая эти диаграммы с изображенными на рис. 4.2, видим, что при способе флокирования «сверху — вниз» близкие значения плотности ворса получаются при времени флокирования 30 с. Таким образом, флокирование «сверху — вниз» с принудительной подачей ворса вдвое производительнее способа «снизу — вверх».

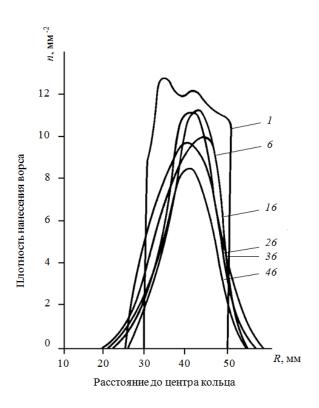



Рис. 4.3. Распределение плотности нанесения («сверху – вниз») капронового ворса длиной 3 мм при различных расстояниях *А* между основой и изолированным металлическим шаблоном (номер кривой численно равен расстоянию *A*, мм)

В *табл.* 4.2 приведены значения максимальной плотности ворса на образцах, флокированных через различные шаблоны, установленные на расстоянии 1 мм от основы (ворс длиной 3 мм с диаметром волокон d = 0.05 мм).

Из таблицы видно, что при малых расстояниях между основой и шаблоном его электрические свойства незначительно влияют на плотность ворса, хотя некоторый положительный эффект дает изолированный металлический шаблон.

Таблица 4.2. Влияние вида шаблона на плотность флокирования

| Вид шаблона     | Максимальная плотность нанесения ворса, мм-2 |                              |  |  |  |  |
|-----------------|----------------------------------------------|------------------------------|--|--|--|--|
| Вид шаолона     | «Сверху – вниз» $(t = 15 c)$                 | «Снизу – вверх» $(t = 30 c)$ |  |  |  |  |
| Диэлектрический | 12                                           | 11                           |  |  |  |  |
| Металлический:  |                                              |                              |  |  |  |  |
| заземленный     | 10                                           | 15                           |  |  |  |  |
| изолированный   | 12                                           | 17                           |  |  |  |  |

На разрешающую способность непосредственно влияют размеры открытых элементов шаблона. Возможно, при некоторой малой ширине открытого элемента или ячейки в шаблоне максимальная плотность будет достигаться слишком долго, что отрицательно скажется на производительности. Кроме того, при достаточно малой величине диафрагмы может вообще не получиться ворсового рисунка.

Графики (*puc.* 4.4) показывают, что независимо от продолжительности флокирования размеры диафрагмы влияют на плотность ворсового покрова лишь при ее ширине менее 3 мм. Это справедливо для ворса всех исследованных размеров (0,5–3 мм). Практически можно флокировать и при ширине отверстий меньше 1 мм, однако, при этом максимальная плотность ворсового покрова не достигается [137].

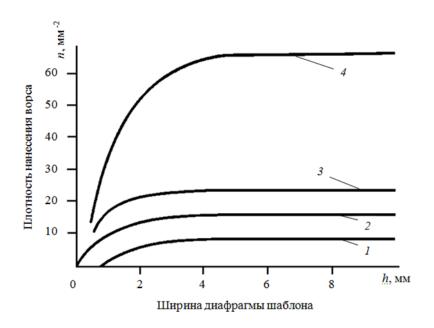



Рис. 4.4. Зависимость плотности нанесения ворса (n) длиной 0,5 мм от ширины диафрагмы шаблона (h) при различном времени флокирования: 1-1 c; 2-2 c; 3-3 c; 4-15 c

Наиболее приемлемо изготовление шаблонов фотомеханическим способом, при котором трафаретный слой наносят на сетку из синтетических нитей. Таким образом, шаблоны для нанесения клея и ворса можно изготавливать на одном оборудовании.

Параметры сетки шаблона определяют плотность ворса, четкость рисунка и равномерность ворсового покрова. При размере открытых участков 3 мм и менее флокирование через сетчатый шаблон сопровождалось потерей плотности. Однако сетки с крупной ячеей ограничивают разрешающую способность флокирования и создают эффект «зубьев пилы», становящийся незаметным глазу лишь при размерах ячейки менее 0,5 мм. Имеет значение также толщина мононити сетки. Эксперименты показали, что при диаметре мононитей больше 0,15 мм возникает эффект «вафли».

Микроскопические измерения плотности ворса [138] показали общую тенденцию ее понижения с увеличением густоты (поверхностного заполнения) сетки шаблона. Поскольку совершенно различные сетки могут иметь одинаковую открытую поверхность, более соответствуют действительности зависимости вида

$$n = f(\frac{C}{r_2})$$
 или  $n = f(\frac{S_{\mathfrak{A}}}{dl})$ ,

где n – плотность нанесения ворса, мм<sup>-2</sup>;

C – сторона ячейки сетки, мм;

 $r_{\rm 3}$  — эквивалентный радиус ворсинки, определяемый как радиус шара одинаковой с волокном плотности и одинаковой с ним скорости движения в воздухе [2];

 $S_{\rm H}$  – площадь ячейки сетки, мм<sup>2</sup>;

d – диаметр волокна, мм;

l — длина волокна, мм.

$$r_{\ni} = \sqrt[3]{ab^2} ,$$

где a и b — соответственно большая и малая полуоси (половина длины и диаметра волокна).

Эти зависимости (*рис. 4.5*), имеющие экспоненциальный характер, видимо, не учитывают полностью характера взаимодействия волокон с сеткой в электрическом поле, хотя по ним достаточно определенно можно судить о пригодности сетки для шаблона [26]. Например, для плотности ворса 70 % (от максимальной для данных условий) нужно флокировать ворсом длиной 1 мм и диаметром 0,02 мм через шаблоны из сетки с  $C/r_3 \ge 10$ . Для этого ворса  $r_3 = 0,037$  мм, т. е.  $C \ge 0,37$  мм. Учитывая, что диаметр мононити  $d_{\rm H} = 0,10 \div 0,15$  мм, сетчатые ткани должны иметь не более 20–21 нити на 1 см или открытую поверхность  $E_{\rm O} \ge 52-64$  %. Аналогичный расчет дает для плотности n=0,8  $n_{\rm max}$  сетки с 10–11 нитями на 1 см, а для n=0,9  $n_{\rm max}$  — не более 2–6 нитей на 1 см. Исходя из практики сеткоткачества изготовление стабильных тканых сеток из тонких мононитей с плотностью по основе и утку менее 10 нитей на 1 см практически невозможно.

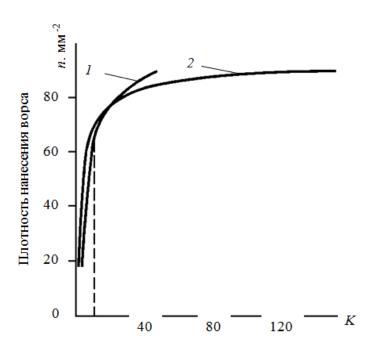



Рис. 4.5. Зависимость плотности нанесения ворса (n) от отношения (K) стороны ячейки к эквивалентному радиусу волокона (1) или площади (2) ячейки к величине dl (l=1 мм; d=0.02 мм)

В *табл.* 4.3 и 4.4 приведены примеры сетчатых тканей, используемых в шаблонах для клея и ворса. Сетки показали хорошие результаты при флокировании ворсом длиной 0.5-2 мм с диаметром волокон 0.02 и 0.05 мм.

В обычном случае при многоцветном флокировании необходимо соответствующее числу цветов количество шаблонов для ворса. При этом точная регулировка положения шаблонов по отношению друг к другу и к клеевому отпечатку представляет сложную техническую задачу. В случае смещений после флокирования наблюдаются просветы между элементами рисунка или наложение ворса разных цветов друг на друга.

Автор исследовала получение двухцветного рисунка с одним шаблоном. Теоретически четкий рисунок возможен, если наносить через шаблон ворс одного цвета с максимальной для данных условий плотностью. Тогда при последующем флокировании ворсом другого цвета без шаблона ни одна ворсинка не сможет проникнуть в уже заполненный участок. Если проводить процесс в первой зоне слишком долго, излишки ворса покроют зафлокированный участок, не внедряясь в клеевой слой. Во второй зоне флокирования окрашенные в определенный цвет ворсинки зарядятся и начнут образовывать ворсовый покров с волокнами второго цвета на оставшихся участках: следовательно, рисунок получится размытым.

Таблица 4.3. Сетчатые ткани, используемые в шаблонах для ворса

| Номер, Меш Сто- Диа- | Откры- Поли | Артикул, | Предпри- |
|----------------------|-------------|----------|----------|
|----------------------|-------------|----------|----------|

| нитей/см | (коли-  | рона  | метр  | тая по- | ли- | ТИП                | ятие-                                                      |
|----------|---------|-------|-------|---------|-----|--------------------|------------------------------------------------------------|
|          | чество  | ячей- | моно- | верх-   | мер |                    | изготовитель                                               |
|          | нитей   | ки,   | нити, | ность,  |     |                    |                                                            |
|          | на      | MM    | MM    | %       |     |                    |                                                            |
|          | 1 дюйм) |       |       |         |     |                    |                                                            |
| 12       | 30      | 0,71  | 0,14  | 70      | ПЭФ | Estal Mono<br>12 S | Schweiz.<br>Seidengazefab<br>rik<br>AG Thal<br>(Швейцария) |
| 14       | 35      | 0,58  | 0,13  | 67      | ПА  | 14 K               | Рахманов-                                                  |
|          |         |       |       |         |     |                    | ский шелко-                                                |
| 20       | 50      | 0,38  | 0,1   | 64      | ПА  | 20 Kc              | вый комби-                                                 |
|          |         |       |       |         |     |                    | нат                                                        |
| 29       | 74      | 0,22  | 0,1   | 50      | ПА  | Nytal 29 S         | Seidengazefab<br>rik<br>AG Thal<br>(Швейцария)             |

Таблица 4.4. Сетчатые ткани, используемые в шаблонах для клея

| Номер | Меш | Сторона ячейки, мм | Диаметр мононити,<br>мм | Открытая поверх-<br>ность, % | Толщина ткани, мм | Расход водно-<br>дисперсионного<br>клея при печати, $\Gamma/M^2$ , не менее | Полимер | Артикул, тип      | Предприятие-<br>изготовитель |
|-------|-----|--------------------|-------------------------|------------------------------|-------------------|-----------------------------------------------------------------------------|---------|-------------------|------------------------------|
| 19    | 48  | 0,36               | 0,16                    | 48                           | 0,28              | 130                                                                         | ПЭФ     | Estal Mono<br>19T | Schweiz.                     |
| 21    | 53  | 0,32               | 0,16                    | 44                           | 0,29              | 125                                                                         | ПЭФ     | 21T               | Seidengazefab                |
| 22    | 56  | 0,30               | 0,15                    | 44                           | 0,26              | 114                                                                         | ПЭФ     | 22T               | rik                          |
| 23    | 59  | 0,28               | 0,15                    | 42                           | 0,26              | 110                                                                         | ПЭФ     | 23T               | AG Thal                      |
| 24    | 60  | 0,27               | 0,15                    | 42                           | 0,27              | 111                                                                         | ПЭФ     | 24T               | (Швейцария)                  |
| 26    | 66  | 0,27               | 0,12                    | 47                           | $0,2^{*}$         | 95                                                                          | ΠЭΦ     | 26T               |                              |
| 20    | 50  | 0,38               | 0,1                     | 64                           | 0,22*             | 141                                                                         | ПА      | 20K               | Рахманов-                    |
| 25    | 63  | 0,26               | 0,1                     | 56                           | 0,22*             | 123                                                                         | ПА      | 25Kc              | ский шелко-                  |
| 29    | 74  | 0,26               | 0,08                    | 59                           | 0,2*              | 118                                                                         | ПА      | 29K               | вый комбинат                 |

<sup>\*</sup> Для флокирования ворсом длиной менее 1 мм.

Оптимальное время флокирования ворсом первого цвета определяли с использованием серии образцов, флокированных при одинаковых условиях 5—120 с. После флокирования первым ворсом шаблоны сняли, образцы вновь поместили во флокатор и провели обработку ворсом второго цвета 45 с (по предварительным данным, время достижения предельной плотности  $t_{\rm max}\approx 45$  с).

После сушки и очистки образцов под микроскопом измеряли плотности первого и второго ворсов на участках, первоначально защищенных шаблоном, т. е. там, где происходило смешение ворса, или наложение второго ворса на первый ( $puc.\ 4.6$ ). С увеличением времени флокирования через шаблон плотность первого ворса ( $n_1$ ) возрастает, а  $n_2$  уменьшается. При флокировании первым ворсом 60 с, ворса 2 на исследуемом участке нет, что подтверждает предположение о возможности получения четкого двухцветного рисунка одним шаблоном.

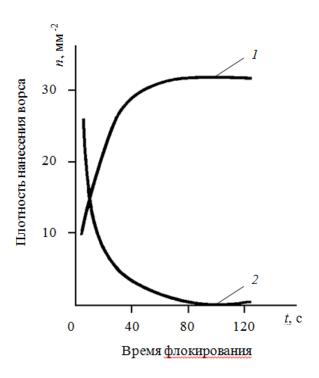



Рис. 4.6 Падение плотности (*n*) повторного нанесения ворса 2 с увеличением времени предварительного флокирования ворсом *1* 

## 4.2. Расчет смесей (меланжей) ворса для получения флокированной поверхности заданного цвета

Общие цветовые модели и системы, разработанные ранее, не могут быть полностью применимы для теоретических расчетов при флокировании ворсом, окрашенным в различные цвета, так же как и разработки в области текстильной печати. Причины заключаются в следующем:

- 1) смешивание красителей осуществляется на молекулярном уровне, а в случае с ворсом происходит смешивание дискретных частиц видимых размеров;
- 2) в отличие от текстильной печати при электрофлокировании на равномерность окраски оказывают влияние электрофизические свойства ворса.

Ниже рассмотрены некоторые колористические эффекты, возникающие при смешивании (меланжировании) окрашенного ворса. Для исследований использовали вискозный ворс длиной 0,5 мм, диаметром 0,02 мм с линейной

плотностью 0,33 текс. Предварительное смешивание ворса проводили в электрическом поле путем дозирования в высоковольтную зону заданного количества ворса разных цветов. Флокирование проводили на одинаковую белую бумажную основу с использованием непигментированного клея. Оценку результатов проводили визуально при сравнении цвета флокированных поверхностей при естественном освещении. Предварительные эксперименты показали, что ворс более чистых, насыщенных цветов в смеси с белым или серым дает большее число визуально различимых цветовых сочетаний, чем ворс менее насыщенных, бледных цветов. Для систематического получения максимального числа оттенков при меланжировании ворса применили следующую методику [139]:

- 1) для получения максимального числа оттенков чистого цвета можно смешивать ворс соседних цветов, например, красный с оранжевым для получения красно-оранжевого;
- 2) окрашенный ворс можно смешивать с белым для получения более светлых насыщенных окрасок;
- 3) цветной окрашенный ворс можно смешивать с черным ворсом для получения более темных насыщенных окрасок;
- 4) цветной окрашенный ворс можно смешивать с ворсом, окрашенным в серый цвет, для получения других тонов, кроме упомянутых в п. 1, 2 и 3.

При исследованиях сделаны следующие предположения: цвет, получаемый при смешивании окрашенного ворса, аналогичен цвету, получаемому при смешивании пигментов; основные цвета ворса в отношении числа цветов, цветовых тонов и насыщенности согласуются с системой Максвелла.

Экспериментальное смешение показало, что светло-синий цвет не получается из смеси темно-синего и белого ворса. Такая смесь дает бледный серо-синий цвет с заметной неровнотой. Следовательно, путем меланжирования невозможно получить чистые светло-синие оттенки. Для получения ряда светлых оттенков необходимо иметь светло-синий ворс и смешивать его с белым ворсом. Кроме того, смесь бледно-синего и темно-синего ворса дает также пятнистую окраску; при этом не получается такой градации цвета, как при меланжировании белых и темно-синих волокон. Таким образом, чтобы сделать возможным получение путем меланжирования полного ряда синих оттенков от светлого до темного оказалось необходимым дополнительно располагать ворсом, окрашенным в средний синий цвет.

Сделанные выше наблюдения относятся также ко всем более насыщенным цветам. Чтобы получить путем меланжирования необходимые цветовые градации, нужно располагать ворсом с двумя или тремя ступенями интенсивности, например, пурпурного и фиолетового цветов.

Дозирование содержания серого в данном цвете является одной из трудных задач. Это вытекает из того обстоятельства, что при смешении ворса черного и белого цветов получаются неровные или пятнистые окраски. Для

большинства серых цветов не достигается непрерывная плавная градация. Преодолеть это затруднение можно, используя ворс, окрашенный в светлосерый цвет или серый цвет средней интенсивности. Первый смешивается с ворсом светлых тонов, а второй — насыщенных.

Другим методом получения серых цветов является меланжирование ворса трех цветов в соответствующих пропорциях. Отобранные цвета должны располагаться внутри треугольника с вершиной в центре цветового круга [140]. Этими цветами могут быть, например, красный, желтый и синий или оранжевый, пурпурный и зеленый. Если соединить точки, соответствующие отобранным цветам на окружности, прямыми линиями, то получится равносторонний треугольник, вписанный в окружность. Считая, что внутри этого треугольника располагается серая область, можно предположить, что смешанные цвета становятся более серыми по мере приближения к центру окружности. Чтобы сравнить цвета, получаемые при смешивании пигментов и меланжировании окрашенного ворса, были образованы 45 цветов меланжей из желтого, синего и красного ворса в соответствии с методикой [141].

Полученные цвета образцов были расположены в виде треугольника (рис. 4.7). Состав смесей представлен в *табл.* 4.5.

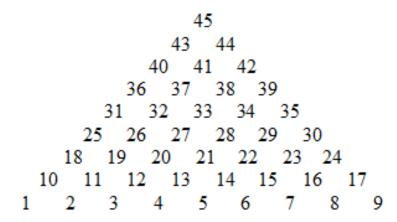



Рис. 4.7. Расположение образцов меланжей ворса в виде треугольника

Три пигмента таких же цветов затем смешивались в аналогичных пропорциях, и полученные окраски также расположены в виде треугольника такого же размера. Цвета образцов в обоих треугольниках затем сопоставляли по цветовому тону и насыщенности. Оказалось, что только в относительно малом числе случаев смеси ворса и смеси пигментов дают близкие друг к другу результаты. Три угла треугольника на *рис.* 4.7 заняты тремя основными цветами, его стороны представляют двухкомпонентные смеси, а остальная часть площади треугольника состоит из трехкомпонентных смесей. Состав смесей тем больше приближается к равным пропорциям (трех составляющих цветов), чем ближе они расположены к центру треугольника. Теоретически, следовательно, смеси под номерами 21, 27, 28 и 33, расположенные вблизи центра треугольника, должны казаться почти нейтрально серыми цветами.

Таблица 4.5. Состав смесей ворса

| Номер | Количе  | ство ворса, | мас. ч | Номер | Количес | ство ворса, | мас. ч |
|-------|---------|-------------|--------|-------|---------|-------------|--------|
| смеси | Красный | Желтый      | Синий  | смеси | Красный | Желтый      | Синий  |
| 1     | _       | 8           | _      | 24    | 6       | _           | 2      |
| 2     | 1       | 7           | _      | 25    | _       | 5           | 3      |
| 3     | 2       | 6           | _      | 26    | 1       | 4           | 3      |
| 4     | 3       | 5           | _      | 27    | 2       | 3           | 3      |
| 5     | 4       | 4           | _      | 28    | 3       | 2           | 3      |
| 6     | 5       | 3           | _      | 29    | 4       | 1           | 3      |
| 7     | 6       | 2           | _      | 30    | 5       | _           | 3      |
| 8     | 7       | 1           | _      | 31    | _       | 4           | 4      |
| 9     | 8       | _           | _      | 32    | 1       | 3           | 4      |
| 10    | _       | 7           | 1      | 33    | 2       | 2           | 4      |
| 11    | 1       | 6           | 1      | 34    | 3       | 1           | 4      |
| 12    | 2       | 5           | 1      | 35    | 4       | _           | 4      |
| 13    | 3       | 4           | 1      | 36    | _       | 3           | 5      |
| 14    | 4       | 3           | 1      | 37    | 1       | 1           | 5      |
| 15    | 5       | 2           | 1      | 38    | 2       | 1           | 5      |
| 16    | 6       | 1           | 1      | 39    | 3       | _           | 5      |
| 17    | 7       | _           | 1      | 40    | _       | 2           | 6      |
| 18    | _       | 6           | 2      | 41    | 1       | 1           | 6      |
| 19    | 1       | 5           | 2      | 42    | 2       | _           | 5      |
| 20    | 2       | 4           | 2      | 43    | _       | 1           | 7      |
| 21    | 3       | 3           | 2      | 44    | 1       | _           | 7      |
| 22    | 4       | 2           | 2      | 45    | _       | _           | 8      |
| 23    | 5       | 1           | 2      |       |         |             |        |

Такой результат получен для треугольника, составленного из смесей пигментов. Цвет смесей окрашенного ворса оказался смещенным к серопурпурному цвету. Следовательно, цвет смеси окрашенного ворса не всегда совпадает с цветом смеси аналогичных пигментов. При сопоставлении цветов, расположенных на сторонах треугольников из пигментных выкрасок и флокированных образцов, найдено, что смеси между желтым и красным (номера 2÷8) были очень близки в обоих треугольниках. Эти смеси характеризовались чистыми цветами. Однако смеси ворса между жёлтым и синим (номера 10÷43) резко отличались от аналогичных смесей пигментов.

Окраски флокированных образцов получились значительно более серыми. Получение яркого и спектрально-чистого зеленого цвета путем смешивания желтого и синего пигментов не представляет затруднений. Получить аналогичный цвет путем смешивания ворса оказалось невозможным. Это яв-

ление объясняется различием в смешении лучей света, отраженных от ворсин и частиц пигментов.

При меланжировании окрашенного ворса наблюдается частично субстрактивный и частично аддитивный синтез световых лучей. Этим объясняется наблюдаемая «сероватость» желто-синих меланжей. Заметное вычитание света наблюдается при смешивании красного и синего пигментов, в то же время смеси окрашенного ворса в этом случае оказываются более яркими и светлыми, чем пигментные смеси. Все трехкомпонентные смеси окрашенного ворса в этом случае оказываются также более яркими и светлыми, чем соответствующие смеси пигментов.

Таким образом, цветовое пространство, образуемое смесями разноцветного ворса, отличается от того, которое дают, например, соответствующие смеси пигментов. Приблизительный выбор компонентов ворсовой смеси для получения поверхности необходимого цвета может быть осуществлен с помощью, например, цветовых кругов. Очевидно, что при подходящем выборе цвет смеси ворса должен располагаться внутри треугольника, образованного тремя компонентами цвета. Недостатком метода является отсутствие количественных данных. Более точные результаты могут быть получены при использовании, например, цветовой диаграммы МКО. Необходимо отметить, что может оказаться невозможным получить желаемый цвет даже в том случае, если три составляющих компонента будут выбраны с помощью названных методов, так как фактически цвета, как уже упоминалось, характеризуются точками, располагающимися в пространстве, в трехмерном цветовом теле.

Например, если требуется подобрать цвет с большой светлотой, то для него можно будет найти правильной цветовой тон и насыщенность, но не удастся найти необходимую светлоту. В этом случае для подбора цвета по цветовому тону, светлоте и насыщенности необходимо воспользоваться четырьмя составляющими. Это обстоятельство объясняется следующим образом: в трехкомпонентной смеси только два компонента составляют независимые переменные, так как содержание третьего компонента предопределено первыми двумя. Следовательно, практически можно использовать лишь две характеристики из трех: цветового тона, насыщенности и светлоты.

Цвет, образующийся в результате смешения окрашенного ворса, можно вычислить по кривым спектрального отражения составляющих цветов. Например, при вычислении цветовых характеристик двухкомпонентных смесей хорошее приближение может быть получено путем использования значений средних геометрических величин коэффициентов отражения компонентов. Для этих целей используется следующее уравнение [142]:

$$R = R_1^x R_2^{1-x} , (4.1)$$

где x и 1-x – доли двух компонентов в смеси, характеризующиеся соответственно коэффициентами отражения  $R_1$  и  $R_2$ .

Экспериментальные кривые, представленные на *рис.* 4.8, показывают хорошее совпадение с расчетными данными. Степень соответствия уменьшается для смесей с большой долей сильно отражающего компонента и малой долей слабо отражающего компонента. Использованная модель дает представление об оптических эффектах, связанных с меланжированием окрашенного ворса.

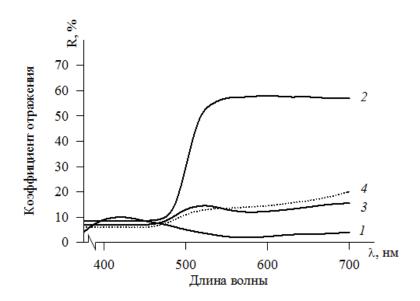



Рис. 4.8. Кривые спектрального отражения для синей 1 и зеленовато-желтой 2 флокированных поверхностей и флокированной поверхности смеси: 3 – экспериментальная, 4 – теоретическая

Вычисление цвета трехкомпонентных смесей ворса основано на том, что при определенных длинах волн отдельные компоненты смеси максимально отражают свет. Для расчета можно использовать формулу, предложенную Фрюле [143]:

$$f(R) = \alpha f(R_1) + \beta f(R_2) + \gamma f(R_3),$$
 (4.2)

где  $f(R) = \exp\left[\frac{\delta(1-R)^2}{2R}\right]$ 

где R — коэффициент отражения смеси ворса при определенной длине волны;

 $R_1,\ R_2,\ R_3$  — коэффициенты отражения трех компонентов при той же длине волны;

 $\alpha$ ,  $\beta$ ,  $\gamma$  — пропорции трех компонентов, причем  $\alpha + \beta + \gamma = 1$ ;

 $\delta$  — фактор рассеяния, значение которого вычислено путем измерения большого числа смесей волокон для получения оптимальных результатов. 200

Для вискозных волокон средняя величина  $\delta = 0.28$  [144]. Для нахождения величины функции f(R) необходимо знать коэффициенты отражения R смеси волокон при каждой длине. На puc. 4.9 представлены кривые спектров отражения для флокированной поверхности розового и голубого цветов и для поверхности из смеси ворса, содержащей 40 % первого и 60 % второго компонента. Плотность нанесения ворса составляла 120 г/м². Коэффициенты отражения замеряли при помощи спектроколориметра «Пульсар».

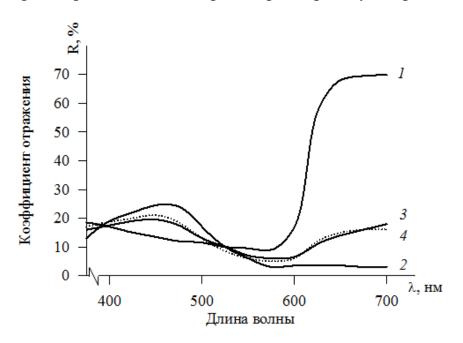



Рис. 4.9. Кривые спектрального отражения для розовой 1, голубой 2 флокированной поверхности и флокированной поверхности смеси ворса: 3 – экспериментальная, 4 – теоретическая при S=0.28

Если известна кривая отражения для смеси волокон, можно рассчитать координаты цвета x, y, z по уравнениям:

$$x = \int R H_{c} \bar{x}(\lambda) d\lambda,$$

$$y = \int R H_{c} \bar{y}(\lambda) d\lambda,$$

$$z = \int R H_{c} \bar{z}(\lambda) d\lambda,$$
(4.3)

где  $H_c$  — энергия стандартного источника света;

 $x(\lambda), y(\lambda), z(\lambda)$  — функции сложения цветов в системе МКО (кривые сложения).

Применяются два варианта расчета характеристик цвета смеси:

1. Для получения рецепта смеси по колориметрическим характеристикам образца, цвет которого нужно воспроизвести, составляют компьютерную

программу на выполнение частных решений по данным характеристикам образца.

2. Вычисляются все цвета для всех возможных смесей из двух и трех компонентов при изменении содержания каждого компонента в пределах от 0 до 100 % с практически удобными интервалами [145].

Компьютерные расчёты требуются для решения уравнений (4.2) и (4.3) с целью получить значения  $\alpha$ ,  $\beta$ ,  $\gamma$ , характеризующие состав смеси. Второй вариант имеет практическое значение только для ограниченного числа цветов. Он заключается в составлении каталога при смешивании компонентов с интервалом 10 % [146].

## 4.3. Технологические основы создания полутоновых многоцветных флокированных рисунков

Условия синтеза цветов для каждого конкретного способа цветопередачи различны. Для успешного решения задачи многоцветной полутоновой печати ворсом необходимо отработать две стадии технологии: цветоделения и флокирования. Ниже выявлены основные параметры технологии: размер печатного элемента, основные цвета ворса и цвет материала-основы для флокирования, плотность нанесения ворса, последовательность флокирования основными цветами — и предложен способ многоцветной полутоновой печати с помощью сетчатых шаблонов.

# 4.3.1. Выбор оптимального размера печатного элемента полутонового флокирования

Воспроизводство рисунка, содержащего ограниченное число цветов (в практике прямой печати ворсом это обычно дин – четыре цвета), требует проведения процесса флокирования в несколько приемов. При этом число цветов используемого ворса равно числу цветов рисунка. Однако часто возникает необходимость напечатать черно-белый или цветной полутоновой (тоновой) рисунок, который содержит различные градации (оттенки) серого или цветных полутонов, плавно переходящие один в другой. Черно-белые изображения репродуцируются с помощью только черных точек, а цветные изображения – разноцветными точками (штрихами, полосками) основных цветов. При рассмотрении такой поверхности с определенного расстояния, когда угловые размеры печатных элементов меньше разрешающей способности человеческого глаза, вместо отдельных элементов наблюдается однотонная поверхность. При компьютерной обработке рисунка важно учитывать, что разрешающая способность мониторов (количество пикселей на линейный дюйм экрана, ррі) и принтеров (количество точек на линейный дюйм бумаги или пленки, срі) выше, чем разрешающая способность печати ворсом.

Очевидно, что чем меньше ворсовые точки, тем с более близкого расстояния поверхность, состоящая из точек, наблюдается как однотонная. Геометрические размеры ворса, технология изготовления сетчатых шаблонов, а также производительность ворсопечатного оборудования накладывают ограничения на минимальный размер печатного элемента (отверстия в шаблоне) [45].

Исследования разрешающей способности печати ворсом, проведенные в разд. 4.1, показали, что при флокировании через шаблон, имеющий просветы 3 мм и менее, неизбежна потеря плотности нанесения ворса. Использование ворса с худшими электрофизическими свойствами требует более длительного времени для достижения максимальной плотности ворсового покрова, что отрицательно сказывается на производительности. Минимальная плотность тканых сеток из тонких мононитей для изготовления шаблонов составляет 10 нитей на 1 см (размер ячейки менее 1 мм).

Для оценки влияния размеров цветных печатных элементов на оптическое смешение цветов изготовлена серия флокированных образцов с размерами печатных элементов 0,5 мм, 1 мм (на сетках), 2 мм, 3 мм (перфорированных). Однотонная поверхность наблюдалась у образцов с величиной цветных точек 0,5 мм и 1 мм с расстояния 3–3,5 м. У образцов с размером печатных элементов 2 мм и 3 мм оптического смешения не происходило, а наблюдалась лишь пестрая поверхность.

Поскольку для воспроизведения многоцветного полутонового рисунка важно получить наиболее высокую плотность нанесения ворса, оптимальным следует считать размер печатного элемента  $0,5\div1$  мм. Поэтому линиатура растра в полутоновом оригинале, предназначенном для электофлокирования, должна быть не более 25 (точек или линий на дюйм). Повышение линиатуры растра означает уменьшение размера полутоновой ячейки и в нашей технологии ведет к падению производительности и качества печати.

### 4.3.2. Исследование влияния долевого участия основных цветов на результирующий цвет флокированной поверхности

Для оценки влияния состава смеси ворса на результирующий цвет флокированной поверхности наработана серия многоцветных флокированных образцов с различным процентным содержанием основных цветов. Эксперименты проводились на карусельной установке для прецизионной печати фирмы *Schenk*. Образцы изготавливали на белой хлопчатобумажной ткани полотняного переплетения с неокрашенным клеем. Параметры флокирования:

- напряженность электрического поля -4.5 кВ/см;
- $-\,$  время флокирования  $-\,20\,$  с;
- расстояние между основой и шаблоном 1 мм;
- плотность нанесения ворса  $100 \, \text{г/m}^2$ .

Рассмотрим пример по определению долевого участия трех основных цветов ворса при цветовом синтезе заданного цвета. В качестве основных были выбраны три цвета ворса. Цвет определяли после флокирования каждым ворсом белой ткани с помощью спектрометра «Пульсар»:

- красный с координатами цвета x = 30.8, y = 19.2, z = 6.9;
- желтый с координатами цвета x = 62.4, y = 68.4, z = 12.1;
- голубой с координатами цвета x = 28.4, y = 34.8, z = 54.9.

Из атласа цветов [147] выбраны 13 цветов с координатами, приведенными в maбn. 4.6. Для определения долевого участия основных цветов и достижения заданной цветовой смеси можно воспользоваться изображением единичных цветов на плоскости цветового графика и общими приемами аналитической геометрии [148]. Пусть даны несколько единичных цветов ворса  $F_1, F_2, ..., F_n$  с координатами цветности  $X_1, Y_1, Z_1; X_2, Y_2, Z_2; ...; X_n, Y_n, Z_n$ . Определим цвет смеси  $m_1$  единиц первого,  $m_2$  единиц второго и далее до  $m_n$  единиц последнего ворса.

Таблица 4.6. Составы смесей из ворса трех цветов

| Номер цвета и на-<br>звание | Координаты                |       |                           | Долевое участие основных цветов, % |                     |                      |  |
|-----------------------------|---------------------------|-------|---------------------------|------------------------------------|---------------------|----------------------|--|
|                             | $\mathbf{x}_{\mathbf{p}}$ | $y_p$ | $\mathbf{z}_{\mathbf{p}}$ | a <sub>1</sub> крас-               | а <sub>2</sub> жел- | а <sub>3</sub> голу- |  |
|                             |                           |       |                           | ный                                | тый                 | бой                  |  |
| 1. Пурпурный                | 11,0                      | 7,7   | 1,5                       | 87                                 | 1                   | 12                   |  |
| 2. Красный светлый          | 24,7                      | 20,9  | 6,7                       | 68                                 | 27                  | 5                    |  |
| 3. Оранжевый                | 50,2                      | 39,3  | 11,1                      | 80                                 | 19                  | 1                    |  |
| 4. »                        | 56,7                      | 47,2  | 21,0                      | 69                                 | 19                  | 12                   |  |
| 5. Темно-зеленый            | 52,1                      | 58,2  | 59,3                      | 12                                 | 20                  | 68                   |  |
| 6. Зеленый                  | 34,0                      | 38,4  | 36,1                      | 8                                  | 26                  | 66                   |  |
| 7. Голубой                  | 42,9                      | 50,2  | 65,3                      | 5                                  | 9                   | 86                   |  |
| 8. Фиолетовый               | 5,7                       | 4,8   | 4,5                       | 62                                 | 2                   | 36                   |  |
| 9. Коричневый               | 7,6                       | 6,5   | 5,0                       | 62                                 | 9                   | 29                   |  |
| 10. Коричневый              | 13,3                      | 10,8  | 8,9                       | 68                                 | 3                   | 29                   |  |
| 11. »                       | 34,8                      | 30,8  | 21,3                      | 57                                 | 14                  | 29                   |  |
| 12. »                       | 10,3                      | 9,1   | 6,9                       | 57                                 | 12                  | 31                   |  |
| 13.Синий                    | 10,1                      | 8,7   | 33,0                      | 15                                 | отрицат.            | 69                   |  |

Искомый цвет Ф смеси

$$\Phi = mF = x'X + y'Y + z'Z,$$

где F – единичный цвет того же качества;

m — модуль;

x', y', z'— координаты искомого цвета.

Имея в виду общее правило, согласно которому координаты цвета равны суммам координат смешиваемых цветов, напишем, что координаты  $x_i$ ,  $y_i$ ,  $z_i$  произвольного i-го слагаемого можно представить так:

$$x'_{i} = m_{i}x_{i}, y'_{i} = m_{i}y_{i}, z'_{i} = m_{i}z_{i}.$$

Отсюда:

$$\begin{cases} x' = \sum x'_{i} = m_{1}x_{1} + m_{2}x_{2} + \dots + m_{n}x_{n} \\ y' = \sum y'_{i} = m_{1}y_{1} + m_{2}y_{2} + \dots + m_{n}y_{n} \\ z' = \sum z'_{i} = m_{1}z_{1} + m_{2}y_{2} + \dots + m_{n}z_{n} \end{cases}$$

$$(4.4)$$

Представим систему уравнений (4.4) в виде

$$\begin{cases} x_{p} = a_{1}x_{1} + a_{2}x_{2} + a_{3}x_{3} \\ y_{p} = a_{1}y_{1} + a_{2}y_{2} + a_{3}y_{3} \\ z_{p} = a_{1}z_{1} + a_{2}z_{2} + a_{3}z_{3} \end{cases}$$

$$(4.5)$$

где  $a_1, a_2, a_3$  – относительные площади цветных поверхностей;

 $x_1$ ,  $y_1$ ,  $z_1$ ;  $x_2$ ,  $y_2$ ,  $z_2$ ;  $x_3$ ,  $y_3$ ,  $z_3$  – координаты цвета цветных поверхностей (основных цветов);

 $x_{p},\ y_{p},\ z_{p}$  — координаты результирующего цвета.

Путем последовательного подставления в левую часть системы уравнений координат результирующих цветов из maбn. 4.6, а в правую — координат основных цветов ворса (красного, желтого и голубого, определенных на спектрометре) и решения системы уравнений относительно  $a_1$ ,  $a_2$  и  $a_3$  при помощи определителей третьего порядка, были расчитаны коэффициенты долевого участия для каждого из выбранных цветов [149]. Результаты расчета приведены в maбn. 4.6. Синий цвет под № 13 из данной тройки основных цветов получить нельзя. Об этом свидетельствует коэффициент долевого участия  $a_2$  для желтого цвета, который по результатам расчета оказался отрицательным.

Для сопоставления расчетных данных с экспериментальными наработаны тестовые флокированные образцы, в которых процентное содержание ворсовых точек варьировалось в соответствии с *табл. 4.7*. Флокированную поверхность получали при помощи тестовых шаблонов, которые изготавливали фотомеханическим способом с использованием сетки № 20. В качестве диапозитивов использовали тестовые цветоделенные пленки (*puc. 4.10*), изготовленные на компьютере. На одном шаблоне для ворса размещали по 12 тестовых прямоугольников. Методика распределения точек по заданной площади описана в [150].

При точном совмещении трех тестовых шаблонов над клеевым отпечатком и последовательном флокировании основными цветами получали

многоцветные образцы с различным процентным содержанием основных цветов. Визуальная оценка цветов тестовых флокированных образцов по методике [151] показала хорошее соответствие расчетных данных с экспериментальными.

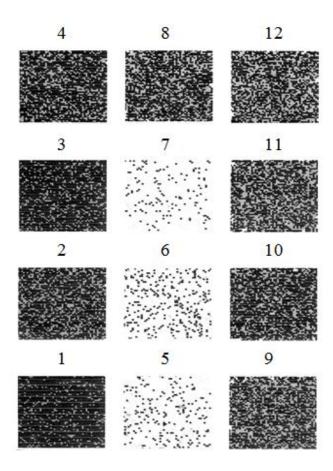



Рис 4.10. Тестовый цветоделенный диапозитив для ворса красного цвета

Для подтверждения полученного эффекта была наработана серия многоцветных флокированных образцов с различным процентным содержанием тех же основных цветов ворса. Условия флокирования были такими же, как описанные выше. В maбn. 4.7 приведен процентный состав точек  $1 \times 1$  мм в тестовых флокированных образцах. Оценку результатов производили визуальным методом по методике, описанной в работе [152].

В образцах с первого по восьмой содержалось незначительное количество печатных элементов голубого цвета (до 10 %). Наблюдалось плавное изменение цвета от красного к жёлтому. В случае, когда долевое участие основных цветов приближается к соотношению 1 : 1 : 1 (образец 9), флокированная поверхность имеет серо-пестрый вид. Поэтому для получения более чистых цветов флокированной поверхности процентное содержание ворса третьего цвета не должно превышать 10 %.

В образцах с 10-го по 18-й варьировалось процентное содержание желтого и голубого цветов, а содержание ворса красного цвета составляло 5 %. При изменении процентного состава ворсовых точек основных цветов в соответствии с *табл. 4.11* наблюдался плавный переход окраски флокированных образцов от зеленого цвета к голубому.

Таблица 4.7. **Процентное соотношение трех основных цветов ворсовых** точек в тестовых флокированных образцах

| Номер<br>образца | Процентное содержание вор-  |        |         | Номер<br>образца | Процентное содержание вор- |        |         |
|------------------|-----------------------------|--------|---------|------------------|----------------------------|--------|---------|
|                  | совых точек $1 \times 1$ мм |        |         |                  | совых точек 1 × 1 мм       |        |         |
|                  | красный                     | желтый | голубой | ооразца          | красный                    | желтый | голубой |
| 1                | 90                          | 5      | 5       | 15               | 5                          | 20     | 75      |
| 2                | 85                          | 10     | 5       | 16               | 5                          | 15     | 80      |
| 3                | 80                          | 15     | 5       | 17               | 5                          | 10     | 85      |
| 4                | 70                          | 20     | 10      | 18               | 5                          | 5      | 90      |
| 5                | 53                          | 42     | 5       | 19               | 8                          | 5      | 87      |
| 6                | 50                          | 45     | 5       | 20               | 10                         | 5      | 85      |
| 7                | 30                          | 65     | 5       | 21               | 15                         | 5      | 80      |
| 8                | 55                          | 40     | 5       | 22               | 20                         | 5      | 75      |
| 9                | 34                          | 33     | 33      | 23               | 23                         | 5      | 72      |
| 10               | 5                           | 55     | 40      | 24               | 28                         | 5      | 67      |
| 11               | 5                           | 51     | 44      | 25               | 32                         | 5      | 63      |
| 12               | 5                           | 50     | 45      | 26               | 35                         | 7      | 58      |
| 13               | 5                           | 40     | 55      | 27               | 40                         | 10     | 50      |
| 14               | 5                           | 32     | 63      |                  |                            |        |         |

В образцах с 19-го по 27-й варьировалось процентное содержание голубого и красного цветов. Количество ворсовых точек желтого цвета составляло 5 %, а в последнем образце -10 %. Наблюдался плавный переход от голубой флокированной поверхности к фиолетовой.

На основании проведенного эксперимента можно сделать вывод, что, изменяя процентное содержание ворсовых точек основных цветов на заданной поверхности рисунка, можно изменять его цветовую гамму в широких пределах, а также создавать полутоновые переходы окраски.

При размерах разноцветных точек  $1 \times 1$  мм однотонная поверхность наблюдалась с расстояния 3,0-3,5 м.

# 4.3.3. Исследование влияния плотности нанесения ворса на цвет флокированной поверхности

При изготовлении изделий с многоцветными флокированными узорами необходимо знать, как влияет плотность нанесения ворса на цвет готового флокированного изделия. С этой целью проводились исследования по определению зависимости коэффициента отражения от длины волны флокирован-

ных поверхностей с разной плотностью нанесения ворса. Флокировали белую и серую хлопчатобумажную тканую основу.

В качестве клея использовали акриловое связующее на водной основе основе. Так как после высыхания клеевая пленка не полностью прозрачна, то ее цвет оказывает влияние на цвет изделия. Следовательно, на цвет флокированного изделия могут оказывать влияние цвет основы, цвет клея, а также цвет применяемого ворса.

На *рис.* 4.11—4.13 представлены графические зависимости коэффициента отражения от длины волны для образцов, флокированных красным, желтым, голубым цветами ворса на белой и серой основах. Коэффициент отражения замеряли при помощи спектрофотометра «Пульсар».

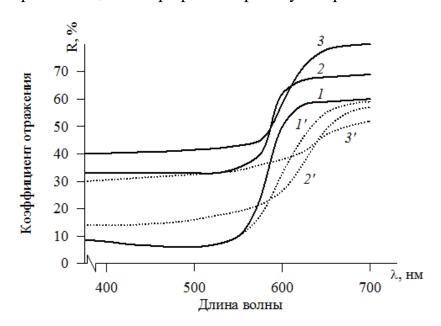



Рис. 4.11. Спектральные кривые флокированной поверхности с ворсом красного цвета: основа белая; · · · · основа серая

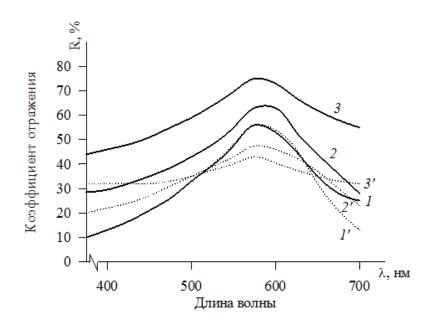



Рис. 4.12. Спектральные кривые флокированной поверхности с ворсом желтого цвета различной плотности нанесения:

основа белая; · · · · основа серая

Кривые 1 и 1' на рисунках соответствуют максимальной поверхностной плотности ворсового покрова  $120 \text{ г/m}^2$ . Кривые 2 и 2' соответствуют поверхностной плотности ворсового покрова  $70 \text{ г/m}^2$ . Кривые 3 и 3' соответствуют поверхностной плотности ворсового покрова  $35 \text{ г/m}^2$ .

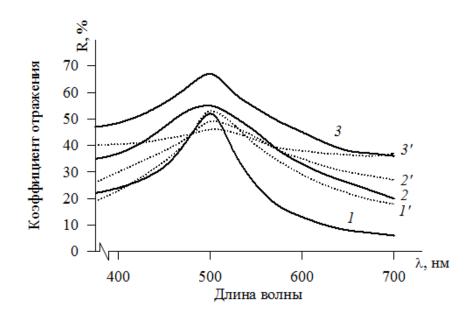
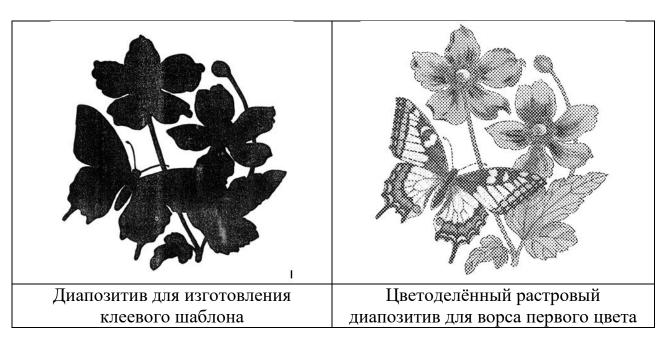
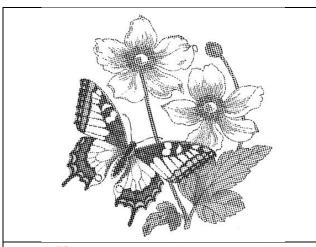



Рис. 4.13. Спектральные кривые флокированной поверхности с ворсом голубого цвета различной плотности нанесения:
\_\_\_\_ основа белая; · · · · основа серая

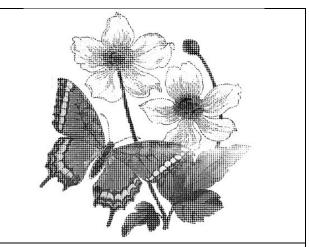
Анализируя эти графические зависимости, можно сделать вывод, что на вид спектральной кривой, а следовательно, и на окончательный цвет флокированной поверхности оказывают влияние как плотность нанесения ворса, так и цвет основы с клеем. При максимальной плотности нанесения ворса (кривая 1) цвет подложки с клеем незначительно влияет на цвет флокированной поверхности. При уменьшении плотности ворсового покрова (кривые 2, 3) цвет подложки с клеем оказывает более существенное влияние на цвет флокированных поверхностей, так как она начинает просвечивать через ворсовый покров.

#### 4.4. Разработка способов многоцветной полутоновой печати ворсом


Чтобы репродуцировать полутоновой цветной оригинал (фотографию, рисунок) с помощью ворсопечатной техники, его необходимо подвергнуть цветоделению и получить на прозрачной пленке растровые позитивы для каждого из основных цветов триады, а также позитив для изготовления клеевого шаблона.


Процесс цветоделения фотоспособом происходит в момент съемки многоцветного объекта или оригинала через светофильтр. Характер распределения плотностей по рисунку на каждом из цветоделенных изображений зависит от того, лучи какой из трех зон спектра поглощали или отражали те или иные участка оригинала, фотографируемого через светофильтр. Прозрачные участки, на которые при изготовлении негатива не действовал свет, на цветном позитиве закрыты соответствующей краской, а те, которые на негативе были плотными, не получают этой краски. Цветовая плотность участков негатива пропорциональна количеству данного цвета на позитиве. Абсолютные величины плотностей учитываются градационным процессом. Он зависит от величины экспозиции, которая влияет на абсолютные величины плотностей и контраст.

В наших исследованиях цветоделение было сделано на полиграфической установке «Цветокорректор» (Великобритания). В результате цветоделения получают четыре цветоделенных диапозитива для голубого, пурпурного, желтого и черного цветов. Четвертый диапозитив выполняется без растрирования, т. е. полностью черным, и используется для изготовления шаблона для клея. На рис. 4.14 показан комплект цветоделенных диапозитивов для трех основных цветов ворса и шаблона для клея. С помощью таких позитивных изображений, выполненных на прозрачной пленке фотомеханическим способом, изготавливают печатные сетчатые шаблоны. Отверстия в шаблонах точно соответствуют размеру и форме зачерненных участков на диапозитивах. Растрирование и цветоделение оригинала с успехом может быть выполнено с помощью графических компьютерных программ, например, Adobe Photoshop. Традиционное полутоновое растрирование передает различные оттенки одного и того же цвета за счет варьирования размеров растровых то-


чек. Чем меньше точки, тем светлее оттенок. Растрирование методом частотной модуляции (*Frequency modulation screening*), называемое также стохастическим растрированием, передает полутона с помощью разного количества точек, имеющих одинаковый размер: чем выше плотность растровых точек, тем темнее оттенок. Для такого FM-растрирования требуется специальное программное обеспечение. Для невысокой линеатуры растра при флокировании одинаковые размеры растровых точек удобнее.

Основной принцип использования цвета в декоративных целях заключается в единстве цветовой схемы [153]. Преобладающими факторами при определении успеха или неудачи цветовой схемы являются основной цвет, диапазон всех использованных цветов и относительные площади цветов. Привлекательность схемы основана на контрасте, который создается разницей в каких-либо свойствах цвета. Разница в светлоте — наиболее резкий тип контраста. Разница в цветовом тоне обычно не столь эффективна и меньше всего влияет на контраст цветовых различий, обусловленных строем поверхности. Также описанные выше явления зависят от относительной площади, занимаемой данным цветом. Если относительная площадь, отведенная одному цвету, увеличивается, повышается вероятность того, что этот цвет будет бросаться в глаза, прежде всего.





Цветоделенный растровый диапозитив для ворса второго цвета



Цветоделённый растровый диапозитив для ворса третьего цвета

Рис. 4.14. Диапозитивы для изготовления клеевого шаблона и шаблонов для ворса

Цветовой синтез многоцветного рисунка происходит при соединении отдельных цветоделённых одноцветных изображений (отпечатков) в одно многоцветное. Одним из основных показателей здесь является цветовой охват, т. е. то цветовое пространство, которое может быть получено данной триадой основных цветов в данной технологии.

На основе теоретических и практических разработок получения цветоделенных изображений, нами разработан способ получения многоцветных ворсовых рисунков с полутоновыми переходами цветов [154]. Сущность способа заключается в следующем: любой многоцветный оригинал (цветная фотография, слайд, цветной рисунок) подвергают цветоделению и получают четыре диапозитива для пурпурного, голубого, желтого и черного цветов.

Диапозитив, предназначенный для изготовления клеевого шаблона, выполняется без растрирования, полностью черным. Как уже отмечалось выше, применяя ворс всего трех цветов, можно охватить широкую гамму оттенков. При растровой многоцветной печати красками они могут накладываться друг на друга в жидком состоянии, т. е. при наложении цветоделённых диапозитивов для создания единой композиции образуются взаимоперекрываемые участки. В технологии электрофлокирования получающийся полутоновой многоцветный рисунок отличается по цветовой гамме от оригинала. Это объясняется тем, что результирующий цвет типографского отпечатка образуется за счет субстрактивного синтеза цвета, а результирующая окраска ворсопечатного рисунка образуется за счет аддитивного синтеза.

С помощью диапозитивов изготавливают печатные формы в виде сетчатых шаблонов фотомеханическим способом [51]. Отверстия в шаблонах соответствуют зачерненным участкам на диапозитивах. При флокировании

ворсом через ограничительные шаблоны происходит наложение одного цвета ворса на другой. В случае, если первый цвет ворса нанесен с максимальной для данных условий плотностью, то при последующем флокировании уже ни одна ворсинка другого цвета не сможет внедриться в клеевой слой на этом же участке флокированной поверхности. Это приводит к ограничению цветовой гаммы рисунка. Для того, чтобы наиболее полно раскрыть многоцветный, растровый эффект при флокировании, необходимо присутствие в мелких печатных элементах ворсин всех цветов. Поставленная задача достигается за счет того, что максимальная плотность ворсового покрова формируется последовательно. Это можно записать в виде соотношений

$$n_1 = (0.3 - 0.35) n_3,$$
  
 $n_2 = (0.66 - 0.69) n_3,$ 
(4.6)

где  $n_1$  – плотность нанесения ворса первого цвета, мм<sup>-2</sup>,

 $n_2$  – плотность нанесения ворса второго цвета, мм<sup>-2</sup>,

 $n_3$  — максимально возможная плотность нанесения ворса третьего цвета, мм $^{-2}$ .

Регулирование плотности нанесения ворса можно осуществлять двумя путями:

- используя сетчатые шаблоны с различной плотностью (открытой поверхностью) сетчатых тканей;
  - изменяя время нанесения ворса.

Разработаны два варианта полутоновой ворсопечати, учитывающие обе эти возможности [155]. В первом способе получения многоцветных полутоновых флокированных рисунков для регулирования плотности нанесения ворса использовали шаблоны для ворса с сетчатыми тканями различной плотности.

Если принять максимальную плотность за единицу, то в соответствии с выражением (4.6) ворс первого цвета необходимо наносить через печатную форму с сеткой, открытая поверхность которой позволяет флокировать данным ворсом с плотностью (0.3-0.35)  $n_3$ . Соответственно печатная форма для второго цвета должна быть изготовлена из сетчатой ткани, открытая поверхность которой позволяет достигать плотность (0.66-0.69)  $n_3$ . Для достижения максимальной плотности печатная форма для ворса третьего цвета должна иметь наибольшую открытую поверхность.

Воспользовавшись зависимостями, установленными ранее для флокирования через сетчатые шаблоны, сделаем расчет параметров сетчатых тканей, которые необходимо использовать для нанесения ворса длиной 1 мм и диаметром 0.02 мм (maбл. 4.8). Исходные данные для расчета: максимальная плотность флокирования 90 мм<sup>-1</sup>, диаметр мононитей сетчатых тканей -0.125 мм.

Таблица 4.8. **Сетчатые ткани для шаблонов при полутоновом** флокировании

| Последовательность  | Плотность                  | Отношение         | Плотность |                        |  |
|---------------------|----------------------------|-------------------|-----------|------------------------|--|
| нанесения ворса     | нанесения                  | $C/r_{\circ}$     | сетки,    | <b>S</b> 0/            |  |
|                     | согласно                   | (по рис. 4.5,     | нитей/см  | S <sub>откр.</sub> , % |  |
|                     | $(4.6) \text{ n, mm}^{-2}$ | кривая <i>1</i> ) |           |                        |  |
| Ворс первого цвета  | $90 \cdot 0.3 = 27$        | ≥5                | 32        | 60                     |  |
| Ворс второго цвета  | $90 \cdot 0.66 = 59$       | ≥8                | 24        | 70                     |  |
| Ворс третьего цвета | 90                         | _                 | _         | без сетки              |  |

Для расширения цветовой гаммы и достижения максимальной плотности ворсового покрова по всей площади рисунка целесообразно наносить каждый цвет ворса в две стадии, т. е. использовать еще один цикл работы ворсопечатной установки.

Ниже приведено теоретическое обоснование второго способа полутоновой печати ворсом, в котором используется двукратное флокирование, а регулирование плотности нанесения ворса осуществляется изменением времени флокирования. По предлагаемому способу, используя всего три цвета ворса, можно получить еще три дополнительных цвета. При этом учитывается, что плотность нанесения ворса на участках обоих типов (одноцветных и смешанных) должна быть близка к максимальной, причем сначала производится последовательное однократное флокирование каждым цветом, а повторное производится в обратном порядке. Схематическое изображение получаемого рисунка приведено на рис. 4.15.

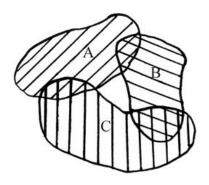



Рис. 4.15. Схема создания шестицветного рисунка нанесением ворса трех цветов (A, B, C)

Рассмотрим процесс флокирования и введем необходимые обозначения. Плотность нанесения ворса описывается следующей формулой:

$$n(t) = n_{max} (1 - e^{-t/\tau}),$$

где  $n_{max}$  – максимальная плотность;

t – время флокирования;

au – параметр, связанный со скоростью флокирования.

Введем для удобства величину  $N=n/n_{max}$ , имеющую смысл относительной плотности флокирования. Очевидно, что N=1 -  $e^{-t/\tau}$  .

Величины, относящиеся к покрытию ворсом одного цвета, обозначим индексами A, B и C, а разных цветов – AB, BC, AC.

Флокирование производится на установке карусельного типа. Предлагается последовательность ABCCBA, т. е. установка должна позволять использовать как прямой, так и обратный ход. Предполагается, что в первом цикле ABC время флокирования каждым цветом одинаково и равно  $t_1$ . Во втором цикле CBA оно также одинаково и равно  $t_2$ , причем  $t_1 \neq t_2$ . Печатные формы для каждого цвета ограничивают область, в которой должен присутствовать соответствующий ворс, причем печатные формы, используемые в обоих циклах, одинаковые, т. е. не меняются. Поскольку в данном случае имеются участки двух типов (с ворсом одного цвета и двух цветов), то ограничимся рассмотрением участков, обозначенных индексами A и AB.

При выбранной последовательности флокирования ABCCBA участок A будет флокироваться дважды: в первом и шестом актах, а часток AB — четырежды: в первом, втором, пятом и шестом.

Рассмотрим последовательное изменение величины N на участке A чистого цвета. Обозначим изменение величины N как  $\Delta N_i$ , где i – номер акта.

1-й акт: 
$$\Delta N_1 = N_1 = 1 - e^{-t_1/\tau}$$
;

6-й акт: 
$$\Delta N_6 = (1 - N_1)(1 - e^{-t_2/\tau})$$
.

Полная относительная плотность:  $N_A = \Delta N_1 + \Delta N_6$ .

Теперь рассмотрим участок смешанного цвета AB:

1-й акт: 
$$\Delta N_1^A = 1 - e^{-t_1/\tau}$$
;

2-й акт: 
$$\Delta N_2^B = (1 - \Delta N_1^A)(1 - e^{-t_1/\tau});$$

5-й акт: 
$$\Delta N_5^B = (1 - \Delta N_1^A - \Delta N_2^B)(1 - e^{-t_2/\tau});$$

6-й акт: 
$$\Delta N_6^A = (1 - \Delta N_1^A - \Delta N_2^B - \Delta N_5^B)(1 - e^{-t_2/\tau})$$
.

Относительная плотность ворса каждого цвета на этом участке

$$N_{AB}^{A} = \Delta N_1^{A} + \Delta N_6^{A};$$

$$N_{AB}^{B} = \Delta N_{2}^{B} + \Delta N_{5}^{B}.$$

Относительная плотность обоих цветов:  $N^{AB} = N^A + N^B$ .

Рассмотрим численный пример. Пусть на смешанных участках количество ворса обоих цветов надо получить примерно равным. Выберем  $t_1=0.51\tau$ ;  $t_2=1.1\tau$ . Используя вышеприведенные формулы, получим:

$$\begin{array}{lll} \Delta N_1 = 0.4, & \Delta N_6 = 0.4, & N_A = 0.8, \\ N_1^A = 0.4, & \Delta N_2^B = 0.24, & \Delta N_5^B = 0.24, & \Delta N_6^A = 0.08, \\ N^A = 0.48, & N^B = 0.48, & N = 0.96. \\ \text{Отсюда видно, что} & N \approx N^{AB} \approx 1; & N^A = N^B \end{array}$$

Изменяя параметры  $t_1$  и  $t_2$  можно получать участки с различным соотношением количества ворса разных цветов. Этот процесс может быть применен для создания сглаженных полутоновых переходов между участками, покрытыми ворсом разного цвета. Можно также рассмотреть процесс последовательного флокирования ворсом более чем двух цветов на одном участке.

### 4.5. Технология получения многоцветного печатного рисунка на временной основе

В этой части работы приведены исследования, проведенные с целью выбрать наиболее удобный и эффективный способ изготовления многоцветных термопереносных рисунков. Принципально существуют две альтернативы:

- 1) печать многоцветного рисунка на временной основе с использованием ворса разных цветов. В этом случае ворс наносится только в пределах контура рисунка; количество последовательных операций флокирования равно количеству цветов рисунка. Для нанесения флокированного рисунка необходимо прецизионное оборудование для многоцветной печати ворсом;
- 2) многоцветная печать красками по подготовленной ворсовой бумаге с белым или светлым ворсом. После этого проводят обычные для термопереноса операции. Различным вариантам этого способа (рис. 4.16) посвящены приведенные ниже исследования.

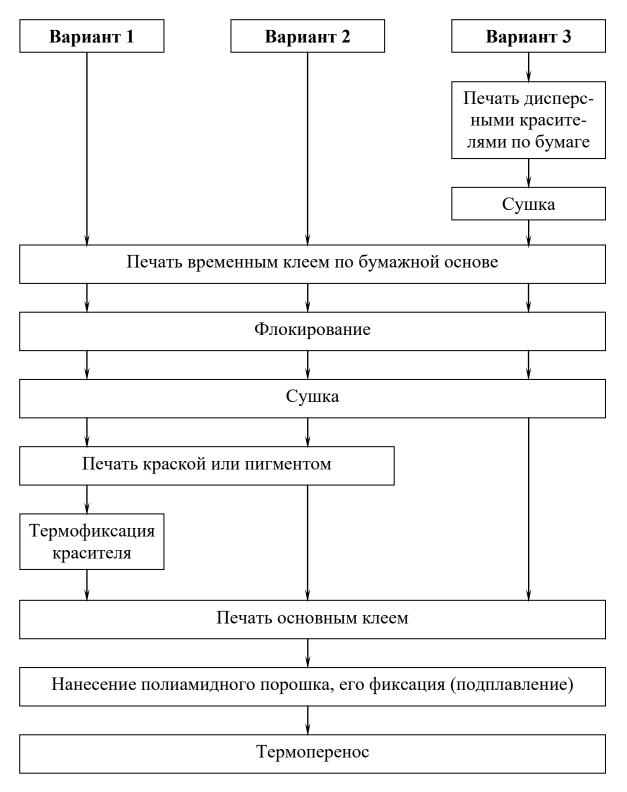



Рис. 4.16. Блок-схема окрашивания ворса термопереносного материала

Вариант 1. На готовую ворсовую бумагу с одноцветным ворсом наносилась печатная краска с помощью механической ракли на лабораторной установке УМ $\Phi$ –2/1. Термофиксация краски проводилась в термошкафу: для активного красителя 160 °C – 5 мин; для прямого красителя (150–160) °C – (4–5) мин;

для дисперсного красителя (160–180) °C - (5–8) мин; для пигментов (160–180) °C - (50–8) мин. Далее с помощью механической ракли наносился эластичный клей, на него — термопластичный полиамидный порошок, который подплавлялся в ИК—сушилке в течение 70 с.

Вариант 2. На готовую ворсовую бумагу с помощью механической ракли наносились печатная краска и основной клей без промежуточной фиксации красителя. Затем наносился термопластичный порошок и подплавлялся в ИК—сушилке. В этом случае проверяли возможность фиксации красителей на ворсе при ИК—сушке одновременно с оплавлением порошка.

Вариант 3 «сублистатик». Печатную краску наносили на бумагу, которая являлась промежуточным ее носителем. Бумагу флокировали, далее наносили основной клей и ПА порошок, который подплавляли в ИК-сушилке. В этом случае использовали белый ворс, окрашивание которого происходило одновременно с оплавлением порошка.

Для получения многоцветного рисунка методом термопереноса исследована возможность применения печатных красок на основе дисперсных, активных, прямых красителей и пигментов. Критериями оценки возможности применения того или иного красителя в технологии термопереноса являлись качество термопереноса и стойкость окраски переведенного рисунка к мокрому трению. Использовали печатные краски промышленной рецептуры (см. гл. 2).

Для исследований изготовлена на лабораторной установке флокированная бумага с вискозным и капроновым ворсом, которую затем печатали через плоский сетчатый шаблон. При этом определялось необходимое количество проходов механической ракли при постоянном давлении для прокрашивания ворса на всю длину. Из проведенной работы выяснилось, что при одном и двух проходах ракли ворс окрашивался неравномерно. При трех проходах происходило полное прокрашивание вискозного ворса, а при четырех — капронового ворса (*табл. 4.9*).

При работе с прямым красителем (рецептура 2) при снятии шаблона с ворсовой бумаги после нанесения печатной краски ворс отслаивался от бумаги и оставался на шаблоне. Пробы с печатными красками разной вязкости и разными загусткам, не привели к положительным результатам. Поэтому пришлось отказаться от работы с этим красителем для многоцветного термопереноса. Скорее всего, ПВА-дисперсия, метазин и карбамол, содержащиеся в этой печатной краске, придают ей слишком высокую адгезию к ворсу.

После печатания ворса красками с активными и дисперсными красителями (рецептуры 1, 3 и 4) осуществили термоперенос (*табл. 4.9*). Полученные образцы обладали высокой жесткостью, на некоторых образцах были дефекты в виде трещин на ворсовой поверхности, расслаивание подложки. Высокая жесткость объясняется тем, что при печати красками по флокированной бумаге исключалась стадия промывки после запаривания, что обычно делается

при печати по тканям. Промывка необходима для удаления загустки и всех непрореагировавших компонентов краски, которые придают материалу высокую жесткость и ухудшают гриф ворсовой поверхности.

Таблица 4.9. Экспериментальные данные по исследованию окрашивания ворса и фиксации красителя на волокне

| Вид кра-                                 | Коли-                            | Термофи         | ксация  | Время                        | Качество термоперено-                                                            | Каче-                         |
|------------------------------------------|----------------------------------|-----------------|---------|------------------------------|----------------------------------------------------------------------------------|-------------------------------|
| сителя и ворса на флоки- рованной бумаге | чество<br>про-<br>ходов<br>ракли | Температура, °С | Вре-мя, | под-<br>плав-<br>ления,<br>с | ca                                                                               | ство<br>окрас-<br>ки<br>ворса |
| Активный (ворс вис-<br>козный)           | 1<br>2<br>3<br>4                 | 160             | 5       | 80                           | Термоперенос прошел, образцы очень жесткие                                       | HP*<br>HP<br>P**<br>P         |
| Активный (ворс ка-<br>проновый)          | 1<br>2<br>3<br>4                 | 160             | 5       | 80                           | Термоперенос неполный, ворс не полностью перешел на ткань, образцы очень жесткие | HP<br>HP<br>HP<br>P           |
| Дисперсный (ворскапроновый)              | 1<br>2<br>3<br>4                 | 180             | 8       | 80                           | Термоперенос прошел, образцы очень жесткие                                       | HP<br>HP<br>HP<br>P           |
| Пигмент<br>(ворс вис-<br>козный)         | 1<br>2<br>3<br>4                 | 180             | 8       | 80                           | То же                                                                            | HP<br>HP<br>P                 |
| Пигмент (ворс ка-<br>проновый)           | 1<br>2<br>3<br>4                 | 180             | 8       | 80                           | » »                                                                              | HP<br>HP<br>HP<br>P           |

<sup>\*</sup>Неравномерное окрашивание

При испытании образцов на стойкость к мокрому трению выяснилось, что увеличение температуры и времени фиксации положительных результатов не дали, фиксации красителей не происходило. Наилучшие результаты по качеству термопереноса, прокрашиванию ворса и фиксации красителя показала печатная краска на основе пигмента (рецептура 5). Нерастворимый в воде пигмент прочно приклеивается к волокну с помощью пленкообразующего вещества.

<sup>\*\*</sup>Равномерное окрашивание

Для пигментной печатной краски рекомендуются эмульсионные загустки, которые получают при эмульгировании в воде высококипящих бензинов в присутствии эмульгатора.

При сушке после печатания и после термообработки бензин полностью испаряется так, что на ткани остается только пигмент, приклеенный пленкообразующим веществом. Таким образом, промывки после данного способа печатания не требуется, и ткань сохраняет свою мягкость и эластичность [156]. Перенос ворса произошёл без дефектов.

Для придания эластичности ворсовым картинкам в печатную краску добавили глицерин. Для исследования по определению оптимальной концентрации глицерина в печатной краске наработаны серии образцов по первому и второму вариантам (рис. 4.16). Полученные образцы испытали на жесткость, стойкость к сухому и мокрому истиранию, стойкость окраски к мокрому трению. Полученные экспериментальные данные приведены в табл. 4.10.

Таблица 4.10. Влияние добавления глицерина на свойства термопереносного

#### материала

| Содержа-      |           | 210  |                          | Стойн     | кость к и | _     | ию,  |           | кость |
|---------------|-----------|------|--------------------------|-----------|-----------|-------|------|-----------|-------|
| ние гли-      |           |      | ect-                     | сухо      | МУ        | мокр  | ому  | к мокрому |       |
| церина        | Ворс      | КОСТ | ь, сН                    |           |           | •     |      | нию,      |       |
| печат-        | 1         |      |                          |           |           |       |      | _         | ІЛЫ   |
| ной крас-     |           |      | Способ окрашивания ворса |           |           |       |      |           |       |
| ке, %         |           | I    | II                       | I         | ÎI        | I     | II   | I         | II    |
| Синий пигмент |           |      |                          |           |           |       |      |           |       |
| 0             | Вискозный | 5.81 | 4.54                     | 172       | 977       | 410   | 88   | 3         | 2     |
| 3             | Вискозный | 5.03 | 4.54                     | 1998      | 1229      | 526.5 | 117  | 3         | 2     |
| 7             | Вискозный | 3.73 | 4.42                     | 1081      | 921       | 391.5 | 53   | 1         | 1     |
| 11            | Вискозный | 4.1  | 4.68                     | 1049      | 862       | 248   | 50   | 1         | 1     |
| 0             | Капрон    | 4.51 | 3.73                     | 1293.5    | 422.5     | 455   | 147  | 3         | 3     |
|               |           |      | Сини                     | й пигмен  | T         |       |      |           |       |
| 3             | Капрон    | 3.51 | 3.60                     | 1760      | 478.5     | 643   | 164  | 3         | 3     |
| 7             | Капрон    | 2.77 | 3.64                     | 617       | 234       | 480   | 138  | 2         | 2     |
| 11            | Капрон    | 3.00 | 3.87                     | 512       | 223       | 425   | 83   | 2         | 1     |
|               |           |      | Желть                    | ій пигмеі | НТ        |       |      |           |       |
| 0             | Вискозный | 3.64 | 3.29                     | 540       | 326       | 417   | 40   | 4         | 3     |
| 3             | Вискозный | 2.34 | 3.29                     | 842       | 440       | 456   | 65   | 4         | 3     |
| 7             | Вискозный | 1.56 | 2.77                     | 802       | 254       | 472   | 29   | 3         | 3     |
| 11            | Вискозный | 3.12 | 3.12                     | 757       | 184.5     | 246   | 2    | 2         | 2     |
| 0             | Капрон    | 3.29 | 7.37                     | 898       | 403       | 171.5 | 46   | 4         | 3     |
| 3             | Капрон    | 1.91 | 2.25                     | 918       | 463.5     | 223.5 | 77   | 4         | 3     |
| 7             | Капрон    | 1.91 | 2.81                     | 693       | 248       | 204   | 72.5 | 3         | 2     |

| 11 Капрон 2.34 2.86 | 148 90 | 107 | 61.5 | 2 | 2 |
|---------------------|--------|-----|------|---|---|
|---------------------|--------|-----|------|---|---|

Анализируя зависимость жесткости от концентрации глицерина видно, что при 3-й и 7%-м содержании глицерина происходит снижение жесткости переведенной картинки, а при дальнейшем увеличении концентрации глицерина жесткость увеличивается. Стойкость к истиранию в сухом и мокром видах при добавлении 3 % глицерина увеличивается, при дальнейшем добавлении глицерина – уменьшается [128].

Лучшие результаты, полученные при 3%-й концентрации глицерина, можно объяснить тем, что происходит структурная пластификация. Она связана с эффектом изменения механических свойств пленки при введении относительно малых количеств низкомолекулярных веществ, практически не взаимодействующих с молекулами полимера. Механизм этого явления сводится к тому, что вводимый пластификатор распределяется между надмолекулярными структурными элементами, облегчая тем самым взаимные перемещения не отдельных звеньев макромолекул, а агрегатов макромолекул.

#### Глава 5. МОДЕЛИРОВАНИЕ СТРУКТУРЫ И ИССЛЕДОВАНИЕ ЕЕ ВЛИЯНИЯ НА СВОЙСТВА ФЛОКИРОВАННЫХ МАТЕРИАЛОВ С ЛОКАЛЬНЫМ НАНЕСЕНИЕМ ВОРСА

### **5.1.** Математическая модель деформирования флокированной ткани при растяжении

В данном разделе продолжены исследования влияния структуры тканей с флокированным рисунком, в частности, относительной доли площади, покрытой ворсом, на её свойства. Нанесение ворса меняет жесткостные свойства текстильного полотна, которое используется в качестве основы, за счёт частичного проникания клея в его структуру. Материал в целом становится более тяжёлым за счёт привеса клея и ворса. Но толщина клея должна быть достаточной для прочного закрепления ворса, и плотность нанесения ворса должна быть достаточно высокой, так как это обеспечивает красивый внешний вид материала. Поэтому важно оценить влияние структурных компонентов материала на его механические характеристики: жёсткость и драпируемость. Для оценки механических свойств флокированной ткани необходимо математические модели, описывающие eë напряженнодеформированное состояние при воздействии различных нагрузок, и использовать методы оценки свойств материала до и после электрофлокирования. Это позволит легче решать проблему оптимизации технологии локального флокирования тканей и других текстильных полотен.

#### 5.1.1. Основные сведения по механике деформирования тканей

Рассмотрим показатели, связанные с кратковременным механическим воздействием на ткань. Исследователи используют различные характеристики в зависимости от поставленных целей и вида нагружения. При этом ситуация осложняется анизотропией механических свойств тканей и нелинейностью механических характеристик, зависящих от уровня нагрузки. Кроме того, ткани практически не могут воспринимать сжимающие усилия.

Упругость является одним из важнейших свойств, определяющих способность тканей сохранять приданную им форму. Характеристиками линейно-упругих свойств материалов при простом одноосном растяжении являются модуль упругости E (модуль Юнга) и коэффициент Пуассона  $\nu$ . В тканях линейная упругость имеет место при очень малых деформациях. При реальных удлинениях (порядка 5–10 %) уже нужно использовать соотношения нелинейной теории упругости.

Введем понятия жёсткостей для текстильного материала. При моделировании процесса растяжения для тканей понятия напряжений  $\sigma_{11}, \sigma_{22}, \sigma_{12}$  (усилий, приходящихся на единицу площади поперечного сечения ткани) неприемлемы. Поэтому в дальнейшем будем оперировать только усилиями, 222

приходящимися на единицу длины сечения образца. Будем обозначать их через  $N_{22}$  (усилие вдоль направления утка, приходящееся на 1 мм поперечного сечения),  $N_{11}$  (усилие вдоль направления основы, приходящееся на 1 мм поперечного сечения),  $N_{12}$  (усилие сдвига, приходящееся на 1 мм). Элемент при этом получает относительные удлинения  $\varepsilon_{11}$ ,  $\varepsilon_{22}$ , которые называются линейными деформациями. Первоначально прямой угол изменяется на угол  $\gamma_{12}$ , который называется сдвигом. Линейные деформации и сдвиг тем больше, чем больше погонные силы  $N_{11}$ ,  $N_{22}$ ,  $N_{12}$ .

Связь усилий  $N_{11},N_{22},N_{12}$  с деформациями  $\varepsilon_{11},\varepsilon_{22},\gamma_{12}$  в общем случае для ортотропного материала можно записать в виде

$$\begin{cases}
N_{11} = E_{11} \varepsilon_{11} + E_{12} \varepsilon_{22} \\
N_{22} = E_{21} \varepsilon_{11} + E_{22} \varepsilon_{22} \\
N_{12} = E_{33} \gamma_{12} = 2E_{33} \varepsilon_{12}
\end{cases}$$
(5.1)

Здесь коэффициенты  $E_{ij}$  назовём жесткостными характеристиками ткани. Далее будем использовать матрично-векторную символику. Тогда соотношения (5.1) можно представить в виде

$$\{N\} = [E] \{\varepsilon\} \tag{5.2}$$

Матрица [E] и векторы {N}, { $\varepsilon$ } имеют вид

$$[E] = \begin{bmatrix} E_{11} & E_{12} & 0 \\ E_{12} & E_{22} & 0 \\ 0 & 0 & E_{33} \end{bmatrix}$$

$$\{N\} = \{N_{11}, N_{22}, N_{12}\}^{\mathrm{T}}$$

$$\{\varepsilon\} = \{\varepsilon_{11}, \varepsilon_{22}, \gamma_{12}\}^{\mathrm{T}}.$$

$$(5.3)$$

Индекс «т» означает операцию транспонирования.

Примечание 1. Обратные зависимости записываются аналогично:

$$\varepsilon_{11} = S_{11} N_{11} + S_{12} N_{22} 
\varepsilon_{22} = S_{12} N_{11} + S_{22} N_{22} 
\gamma_{12} = S_{33} N_{12}$$
(5.4)

Коэффициенты  $S_{i\,j}$  называются характеристиками податливости. Вектор деформаций можно представить в виде

$$\{\varepsilon\} = [S] \{N\} \tag{5.5}$$

Матрица [S] имеет вид

$$[S] = \begin{bmatrix} S_{11} & S_{12} & 0 \\ S_{12} & S_{22} & 0 \\ 0 & 0 & S_{33} \end{bmatrix}$$
 (5.6)

Из структуры матрицы и выражений (5.1), (5.4) вытекают следующие соотношения:

$$E_{33} = 1/S_{33}, S_{33} = 1/E_{33},$$

$$\begin{bmatrix} E_{11} & E_{12} \\ E_{12} & E_{22} \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{12} & S_{22} \end{bmatrix}^{-1}, \begin{bmatrix} S_{11} & S_{12} \\ S_{12} & S_{22} \end{bmatrix} = \begin{bmatrix} E_{11} & E_{12} \\ E_{12} & E_{22} \end{bmatrix}^{-1}$$
(5.7)

В развернутом виде соотношения (5.7) записываются в виде:

$$S_{11}= E_{22}/\det 1, \quad S_{22}= E_{11}/\det 1, \quad S_{12}= -E_{12}/\det 1,$$

$$\det 1 = E_{11} E_{22} - (E_{12})^2; \qquad (5.8)$$

$$E_{11}= S_{22}/\det 2, \quad E_{22}= S_{11}/\det 2, \quad E_{12}= -S_{12}/\det 2,$$

$$\det 2 = S_{11} S_{22} - (S_{12})^2$$

Примечание 2. При решении задач о напряженно-деформированном состоянии ткани необходимо иметь соотношения (5.2) или (5.5). Однако при использовании пакетов прикладных программ типа Ansys нужно задавать толщину ткани и технические константы —  $E_1$  (модуль Юнга в направлении основы),  $E_2$  (модуль Юнга в направлении утка),  $G_{12}$  (модуль сдвига),  $V_{12}$  (коэффициент Пуассона). Они могут быть вычислены через коэффициенты  $D_{ij}$ ,  $S_{ij}$  по следующим формулам:

$$v_{12} = E_{12} / E_{11}, v_{21} = E_{12} / E_{22}$$

$$E_{1} = E_{11} (1 - v_{12} v_{21}) / h, (5.9)$$

$$E_{2} = E_{22} (1 - v_{12} v_{21}) / h, G_{12} = E_{33} / h,$$

где h — толщина ткани.

Поскольку при расчете по формулам (5.2) толщина не используется, то при вычислении характеристик  $E_1$ ,  $E_2$ ,  $G_{12}$ ,  $v_{12}$  и при применении их затем в пакетах прикладных программ можно задавать любое значение для h и удобно принимать для него единичное значение. Поэтому в дальнейших выкладках будем принимать, что h=1.

# 5.1.2. Математическая модель поведения флокированной ткани при растяжении по теории осреднения свойств многослойных структур 224

Для нелинейного случая в осях ортотропии примем выражение для энергии упругой деформации W (упругий потенциал) для нефлокированной ткани в следующем виде:

$$W = D_{110} \varepsilon_{11}^{2} / 2 + D_{112} \varepsilon_{11}^{4} / 12 + D_{120} \varepsilon_{11} \varepsilon_{22} + D_{220} \varepsilon_{22}^{2} / 2 + D_{222} \varepsilon_{22}^{4} / 12 + D_{330} \gamma_{12}^{2} / 2 + D_{334} \gamma_{12}^{6} / 30$$

$$(5.10)$$

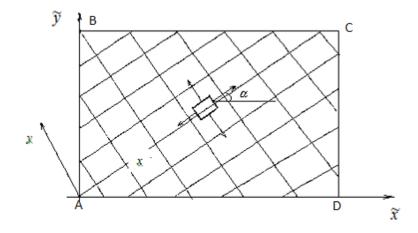



Рис. 5.1. Схема образца ткани, вырезанного под углом  $\alpha$  к направлению основы

В выражении (5.10) D — это коэффициент жёсткости, или жесткостные характеристики материала. Такой вид W обеспечивает выполнение условий положительности жёсткостей. В приращениях связь погонных усилий через приращения деформаций выразится в виде

$$d\{N\} = [D]d\{\varepsilon\},$$

где  $D_{11} = \frac{d^2W}{d\varepsilon_{11}^2}, \ D_{22} = \frac{d^2W}{d\varepsilon_{22}^2}, \ D_{33} = \frac{d^2W}{d\gamma_{12}^2}, \ D_{12} = \frac{d^2W}{d\varepsilon_{11}\varepsilon_{22}}.$ 

Через W связь  $N_{ij}$  с  $\varepsilon_{ij}$  записывается в виде [157]:

$$N_{ij} = \partial W / \partial \varepsilon_{ij} \tag{5.11}$$

Тогда, согласно (5.1) и (5.10) получаем выражения для характеристик жесткости нефлокированной ткани  $D_{ij}^{mкань}$ :

$$\begin{cases} D_{11}^{m\kappa ahb} = D_{110} + D_{112} \varepsilon_{11}^{2} \\ D_{22}^{m\kappa ahb} = D_{220} + D_{222} \varepsilon_{22}^{2} \\ D_{12}^{m\kappa ahb} = D_{120} \\ D_{33}^{m\kappa ahb} = D_{330} + D_{334} \gamma_{12}^{4} \\ D_{21}^{m\kappa ahb} = D_{12} \end{cases}$$

$$(5.12)$$

Здесь видно, что нефлокированная ткань принята ортотропной, т. е. это ткань, механические свойства которой вдоль основы отличаются от свойств вдоль утка. Упругий закон в лабораторной системе координат  $\tilde{x}$   $\tilde{y}$  (рис. 5.1) примет вид

$$\{\tilde{N}\} = [\tilde{D}]\{\tilde{\varepsilon}\},$$
где  $[\tilde{D}] = [T_1][D][T_1]^T$   $[\tilde{D}] = \begin{bmatrix} \tilde{D}_{11} & \tilde{D}_{12} & \tilde{D}_{13} \\ \tilde{D}_{21} & \tilde{D}_{22} & \tilde{D}_{23} \\ \tilde{D}_{31} & \tilde{D}_{32} & \tilde{D}_{33} \end{bmatrix}$  (5.13)

Здесь 
$$T_1 = \begin{bmatrix} Cos^2\alpha & Sin^2\alpha & -Sin2\alpha \\ Sin^2\alpha & Cos^2\alpha & Sin2\alpha \\ \frac{Sin2\alpha}{2} & \frac{-Sin2\alpha}{2} & Cos2\alpha \end{bmatrix}$$

$$T_2 = (T_1)^T.$$

 $T_1,T_2$  — матрицы перехода из системы координат  $\widetilde{x}$   $\widetilde{y}$  в x y . Векторы погонных усилий  $\{N\}$  и деформаций  $\{\mathcal{E}\}$  в осях xy и  $\widetilde{x}\widetilde{y}$  связаны соотношениями

$$\widetilde{N} = T_1 \cdot N$$
,  $N = T_1^{-1} \cdot \widetilde{N}$ ,  $\widetilde{\varepsilon} = T_2 \varepsilon$ ,  $\varepsilon = (T_2)^{-1} \widetilde{\varepsilon}$ . (5.14)

Аналогично вводится упругий потенциал для флокированной ткани. Отличать соотношения будем с помощью индекса « $\phi$ »:

$$W^{\phi} = D_{110}^{\phi} \varepsilon_{11}^{2} / 2 + D_{112}^{\phi} \varepsilon_{11}^{4} / 12 + D_{120}^{\phi} \varepsilon_{11} \varepsilon_{22} + D_{220}^{\phi} \varepsilon_{22}^{2} / 2 + D_{222}^{\phi} \varepsilon_{22}^{4} / 12 + D_{330}^{\phi} \gamma_{12}^{2} / 2 + D_{334}^{\phi} \gamma_{12}^{6} / 30$$

$$(5.15)$$

#### 5.1.3. Определение напряженно-деформированного состояния ткани методом конечных элементов

Основная идея метода конечных элементов (МКЭ) состоит в том, что искомую функцию, такую как перемещение, можно аппроксимировать некоторым числом кусочно-непрерывных функций, определенных на подобластях, назы-

ваемых элементами [158]. Разбиение области на подобласти представляет собой первый шаг к решению задачи. В качестве подобласти взят шестиузловой треугольный элемент второго порядка (puc. 5.2). На рисунке показана введенная в работе локальная нумерация узлов отдельного элемента. В каждом узле показаны перемещения по двум направлениям: u – по горизонтали, v – по вертикали.

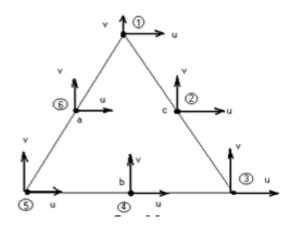



Рис. 5.2. Шестиузловой треугольный КЭ с тремя точками интегрирования

После того, как реальная структура представлена в виде ансамбля конечных элементов, необходимо рассчитать характеристики жесткости всех элементов и действующие в них усилия. В основе МКЭ лежит закон сохранения энергии (принцип Лагранжа), который в матричной форме можно записать в виде

$$\int_{\Omega} N^T \delta \varepsilon d\Omega = \int_{\omega} p^T \delta u , \qquad (5.16)$$

где  $\Omega$  – область, занимаемая образцом ткани,  $\omega$  – ее граница, p – вектор сил, приложенных на этой границе,  $\delta\varepsilon$  – вариация вектора деформаций (т. е. произвольно выбранный вектор деформаций),  $\delta u$  – вариация вектора перемещений, индекс «T» означает операцию транспонирования. Из этого принципа вытекает следующее уравнение равновесия, записанное в матричной форме [161]:

$$[K]{U} = {P},$$
 (5.17)

где [K] – глобальная матрица жесткости,

 $\{U\}$  — вектор узловых перемещений,

 $\{P\}$  — вектор внешних узловых сил.

Поле перемещений позволяет найти в теле распределение поля деформаций, а затем поле напряжений. Глобальная матрица жесткости [K] состоит из матриц жесткостей отдельных элементов:

$$[K^m] = \iiint_{\Delta} [B]^T [D][B] dV , \qquad (5.18)$$

где [D]— матрица упругих характеристик материала при плоском напряженном состоянии. Для матрицы [B] в случае плоской задачи справедливо следующее выражение:

$$[B] = [Q][M],$$
 (5.19)

где  $[Q] = \begin{bmatrix} \frac{\partial}{\partial x} & 0\\ 0 & \frac{\partial}{\partial y}\\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}$ .

Для случая треугольных КЭ второго порядка [M] имеет вид

$$[M] = \begin{bmatrix} (2L_1 - 1)L_1 \ 0 \ 4L_1L_3 \ 0 \ (2L_3 - 1)L_3 \ 0 \ 4L_3L_5 \ 0 \ (2L_5 - 1)L_5 \ 0 \ 4L_5L_1 \ 0 \\ 0 \ (2L_1 - 1)L_1 \ 0 \ 4L_1L_3 \ 0 \ (2L_3 - 1)L_3 \ 0 \ 4L_3L_5 \ 0 \ (2L_5 - 1)L_5 \ 0 \ 4L_5L_1 \end{bmatrix},$$

где  $L_i$  являются координатными переменными, и для них имеет место выражение

$$L_{i} = (a_{i} + b_{i}x + c_{i}y)/\Delta,$$

$$\begin{cases} a_{i} = x_{j}y_{m} - x_{m}y_{j} \\ b_{i} = y_{j} - y_{m} \\ c_{i} = x_{m} - x_{j} \end{cases},$$

$$\Delta = \begin{vmatrix} 1 & x_{1} & y_{1} \\ 1 & x_{3} & y_{3} \\ 1 & x_{5} & y_{5} \end{vmatrix},$$
(5.20)

где  $x_i, y_i$  – координаты узлов элемента.

Выражения для  $a_j, a_k, b_j, b_k, c_j, c_k$  получаются путем циклической перестановки индексов  $(i \to j \to k \to i)$ . Здесь индексы i, j, m определяют соответственно нечетные узлы 1, 3, 5 в конечном элементе (puc. 5.2). Вектор перемещений в элементе с помощью матрицы функции формы [M] и вектора поля узловых перемещений  $\{U\}$  представляется в виде

$$\{U\} = (u_1 v_1 u_2 v_2 u_3 v_3 u_4 v_4 u_5 v_5 u_6 v_6)^T.$$
 (5.22)

Для решения задачи определения формы ткани и усилий, которые в ней возникают при воздействии тех или иных нагрузок, разработан пакет программ [159], основанных на МКЭ и написанных на языке *Fortran Power Station*. Для визуализации результатов и построения графиков был разработан програм-мный комплекс, основанный на прикладном пакете *Mathematica* 5.0.

Для проверки правильности функционирования разработанных пакетов они были протестированы на следующих задачах: задаче об осевом растяжении полосы ( $puc.\ 5.3,\ a$ ) и задаче об изгибе балки ( $puc.\ 5.3,\ \delta$ ). Объекты представлены как двумерные тела.



Рис. 5.3. Виды нагружения образцов и граничные условия

Численное решение этих задач по перемещениям и напряжениям отличалось от решения, даваемого формулами сопротивления материалов, менее чем на 1-2 %. При тестировании использовались 200 и более конечных элементов. Для исследования процесса сходимости по количеству конечных элементов область образца ткани была разбита на различное количество треугольных элементов.

Как показали численные эксперименты, результаты, полученные при количестве КЭ порядка 1000, отличаются менее, чем на 2 % от результатов, полученных при количестве КЭ более 2000 [162]. Поэтому можно ограничиться количеством элементов порядка 1000.

### **5.1.4.** Идентификация механических характеристик. Верификация разработанных методик

Под задачами идентификации в данных исследованиях понимаются обратные (в математическом смысле) задачи, в которых по известным входным и выходным данным определяются параметры модели, описывающей поведение системы.

Задача идентификации ставится следующим образом: считаются известными данные испытаний образцов с замером внешних воздействий и считаются неизвестными параметры математической модели поведения материала. Рассматривается прямая задача растяжения образца, результаты численного расчета сравниваются с экспериментальными данными и механические характеристики подбираются так, чтобы они были близки. Таким образом, фор-

мулируется задача о минимизации дисперсии между расчетными и экспериментальными данными. Она имеет вид

$$\delta^{2} = [(P_{y}^{cp})^{9\kappa cn} - (P_{y}^{cp})^{pacq}]^{2} \Big|_{P_{I} \alpha_{I}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{I} \alpha_{I}} + [(P_{y}^{cp})^{9\kappa cn} - (P_{y}^{cp})^{pacq}]^{2} \Big|_{P_{2} \alpha_{2}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{2} \alpha_{2}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{2} \alpha_{2}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [(P_{y}^{cp})^{9\kappa cn} - (P_{y}^{cp})^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big|_{P_{1} \alpha_{1}} + [\Delta \Delta^{9\kappa cn} - \Delta a^{pacq}]^{2} \Big$$

где n – количество проведенных экспериментов.

В данной задаче считаются неизвестными жесткостные характеристики  $D_{110}, D_{114}, D_{220}, D_{224}, D_{120}, D_{330}, D_{334}$ . Для характеристик  $D_{ij}$  должно выполняться следующее ограничение [161]:

$$D_{11}D_{22} - D_{12}^2 > 0 (5.24)$$

Далее подбираются  $D_{ijk}$  из условия минимума  $\delta^2$  при ограничении (5.24). Для минимума функционала (5.23) при ограничениях (5.24) применялись стандартные градиентные методы.

На первом этапе определяются жесткостные характеристики  $D_{110}, D_{114}, D_{220}, D_{224}, D_{120}, D_{330}, D_{334}$  для нефлокированной ткани по результатам испытаний образцов, вырезанных под разными углами (0°,30°,45°,90°) к основе при различных растягивающих усилиях. Результаты испытаний образцов, вырезанных под углом 30° к основе, были разделены на две группы. Первая группа содержала результаты, полученные при малых усилиях растяжения. Она использовалась для определения жесткостных характеристик ткани. Вторая группа результатов, полученных при больших усилиях растяжения, считалась контрольной. Затем определялись жесткостные характеристики  $D_{ij}^{\phi}$  для тканей с клеевым слоем и флокированной.

Приведенная методика была протестирована на прямой задаче с заданными жесткосными характеристиками для образцов, вырезанных под углами (0°,30°,45°,90°). Полученные результаты считались «экспериментальными». Затем решалась обратная задача на основе полученных «экспериментов», т. е. определялись жесткостные характеристики данной математической модели. Результаты показали работоспособность методики и программы.

Для модельной задачи возьмём результаты экспериментов, приведенных в работе [160]. Экспериментальные образцы полиэфирной (ВПЭ 100 %) плательной ткани имели зажимную длину b=100 мм, зажимную ширину a=50 мм. Экспериментальные данные представлены в maбn. 5.1. Схема нагружения образца представлена на puc. 5.4.

Идентификацию неизвестных жесткостных коэффициентов ткани  $D_{110}, D_{114}, D_{220}, D_{224}, D_{120}, D_{330}, D_{334}$  проводили по экспериментальным данным для образцов полиэфирной ткани, вырезанных под углами  $\alpha$   $(0^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ})$  к основе.

| Таблица 5. | 1. Эксперия | ментальные | данные |
|------------|-------------|------------|--------|
|------------|-------------|------------|--------|

| Угол     | Разрыв- | Нагрузка | Удли-           | Удлине-         | Нагрузка | Удли-            | Удлине-          |
|----------|---------|----------|-----------------|-----------------|----------|------------------|------------------|
| $\alpha$ | ная на- | P, H     | нение           | ние             | 2P, H    | нение            | ние              |
|          | груз-ка |          | $\Delta a(P)$ , | $\Delta b(P)$ , |          | $\Delta a(2P)$ , | $\Delta b(2P)$ , |
|          | Рн ,Н   |          | MM              | MM              |          | MM               | MM               |
| 0°       | 810     | 4        | 0.13            | 5               | 8.1      | 0.23             | 9.5              |
| 90°      | 700     | 3.5      | 0.2             | 7               | 7        | 0.36             | 13               |
| 45°      | 410     | 2        | 0.85            | 11              | 4.1      | 1.5              | 18.5             |
| 30°      | 400     | 2        | 0.68            | 9               | 4        | 1.27             | 16               |

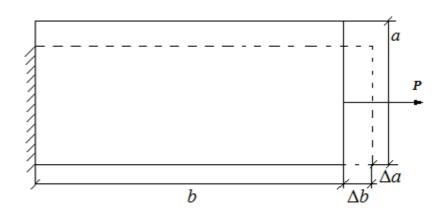



Рис. 5.4. Схема нагружения образца силой P

В результате, для указанной ткани получены следующие жесткостные характеристики:

$$\begin{split} D_{110} &= 1.58 M\Pi a, D_{112} = 8000 M\Pi a, D_{220} = 0.95 M\Pi a, D_{222} = 1500 M\Pi a, \\ D_{120} &= 0.178 M\Pi a, D_{330} = 0.065 M\Pi a, D_{334} = 13.5 M\Pi a, \end{split} \tag{5.25}$$

Для проверки адекватности полученных моделей реальному поведению ткани был проведен расчет зависимости P от удлинения  $\Delta b$  по соотношениям (5.3), (5.14), (5.25) для углов (0°,30°,45°,90°), а также для контрольного образца с углом наклона к основе  $\alpha = 30^{\circ}$ . Результаты приведены на puc.~5.5. Точками отмечены экспериментальные данные. Видно, что полученные результаты хорошо согласуются с экспериментом во всех рассмотренных случаях.



Рис. 5.5. Зависимость среднего усилия на торце Р от удлинения  $\Delta b$  для полиэфирной ткани при нагружении под разными углами к направлению основы ткани (экспериментальне точки и теоретическая кривая)

### 5.1.5. Возможность применения теории смесей при расчете деформаций флокированной ткани

Рассмотрим конечно-элементную модель деформирования флокированной ткани применительно к решению задачи о растяжении образцов и исследуем два подхода. В первом используются соотношения линейной механики многослойных структур, а во втором учитывается конфигурация флокированного рисунка. Необходимые для численных экспериментов механические характеристики исходной ткани представлены в *табл. 5.2*.

Таблица 5.2. Характристики исходной (нефлокированной) ткани

| Удлине-       | Mo-                | Коэффици-            | $D_{11}$ , | $D_{22}$ | $D_{33}$ | $D_{12}$ | Шири- | Зажим-        |
|---------------|--------------------|----------------------|------------|----------|----------|----------|-------|---------------|
| ние           | дуль               | ент $v_{\kappa neg}$ | МΠ         | ,        | ,        | ,        | на    | ная дли-      |
| $\Delta b,\%$ | $E_{\kappa nea}$ , | KIEK                 | a          | МΠ       | МΠ       | МΠ       | a, mm | на            |
|               | МΠа                |                      |            | a        | a        | a        |       | <i>b</i> , мм |
| 20            | 3                  | 0.45                 | 3,5        | 8        | 0.17     | 0.97     | 50    | 200           |

Согласно теории осреднения (теории «смесей» по толщине) компоненты матрицы жесткости флокированной ткани можно выразить в виде

$$D_{ij} = D_{ij}^{m\kappa a \mu u} + D_{ij}^{\kappa \eta e \eta} h_{\kappa \eta e \eta}$$
 (5.26)

где  $h_{\kappa \text{лея}}-$  толщина нанесенного на ткань клеевого слоя.

$$[D^{\kappa\eta eg}] = \begin{bmatrix} D_{11}^{\kappa\eta eg} & D_{12}^{\kappa\eta eg} & 0\\ D_{21}^{\kappa\eta eg} & D_{22}^{\kappa\eta eg} & 0\\ 0 & 0 & D_{33}^{\kappa\eta eg} \end{bmatrix},$$
 (5.27)

Клеевое покрытие можно принять изотропным, т. е. свойства клея во всех направлениях считать одинаковыми. Также можно считать, что они описываются линейными соотношениями

$$D_{11}^{\kappa neg} = D_{22}^{\kappa neg}, \ D_{12}^{\kappa neg} = D_{21}^{\kappa neg},$$
 (5.28)

где

$$D_{11}^{\kappa_{1}eg} = E_{\kappa_{1}eg} / (1 - v_{\kappa_{1}eg}^{2}), \tag{5.29}$$

$$D_{12}^{\kappa_{1}e_{9}} = \nu_{\kappa_{1}e_{9}} D_{11}^{\kappa_{1}e_{9}}, D_{33}^{\kappa_{1}e_{9}} = E_{\kappa_{1}e_{9}} / [2(1 + \nu_{\kappa_{1}e_{9}})]$$
(5.30)

Для ткани используются соотношения (5.12). На *рис.* 5.6 приведены графики зависимостей силы P, необходимой для удлинения образца на 20 %, от доли площади  $A_{\kappa res}$ , занятой клеем на флокированной ткани. Представлены зависимости, полученные при точном учете конфигурации рисунка флокированной части, а также зависимости, полученные по теории смесей.

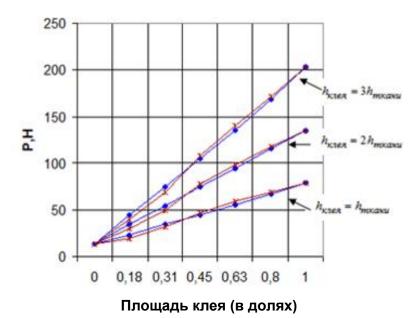



Рис. 5.6. Зависимости силы P от удельной площади клея:
- по упрощенной методике, - по метёодике, учитывающей конфигурацию флокированного рисунка

$$D_{ij}^{cped} = D_{ij}^{m\kappa a \mu u} + D_{ij}^{\kappa n e g} A_{\kappa n e g} h^{\kappa n e g}, \qquad (5.31)$$

где  $A_{\kappa_{neg}}$  — удельная площадь клея.

Анализ численных экспериментов показал, что формулу смесей в случае осреднения свойств ткани и клея по площади можно использовать с достаточной для практических расчётов точностью. Это сразу упрощает задачу исследования деформативных свойств флокированных тканей, поскольку отпадает необходимость учёта конфигурации рисунка.

### 5.1.6. Определение жесткостных характеристик флокированной ткани по результатам экспериментов на растяжение

В данном разделе проведена обработка экспериментальных данных для исходной ткани, ткани с клеем и флокированной ткани с целью определить жесткосные характеристики ткани и клея. Для проведения численного эксперимента использованы данные, полученные для образцов, вырезанных под углами  $0^{\circ}$ ,  $90^{\circ}$ ,  $45^{\circ}$ . Как было сказано ранее, результаты испытаний образца, вырезанного под углом  $30^{\circ}$  к основе, были разделены на две группы. Первая группа содержала результаты, полученные при малых удлинениях (при  $\Delta b/b = 0.05$  и  $\Delta b/b = 0.1$  в maбn. 5.6). Она использовалась для определения жесткостных характеристик ткани. Вторая группа результатов, полученных при больших усилиях растяжения, считалась контрольной. Компоненты матрицы жесткости для ткани имеют вид

$$\begin{cases} D_{11}^{m\kappa ahb} = D_{110} + D_{114} \mathcal{E}_{11}^4 \\ D_{22}^{m\kappa ahb} = D_{220} + D_{224} \mathcal{E}_{22}^4 \\ D_{12}^{m\kappa ahb} = D_{120} \\ D_{33}^{m\kappa ahb} = D_{330} + D_{334} \gamma_{12}^4 \\ D_{21}^{m\kappa ahb} = D_{12} \end{cases}$$

$$(5.32)$$

При обработке экспериментов для исходной ткани были получены жесткостные характеристики (5.15), входящие в соотношение (5.1).

$$(D_{110})^{m\kappa ahb} = 3.5 \ M\Pi a, (D_{112})^{m\kappa ahb} = 3.500 \ M\Pi a, (D_{220})^{m\kappa ahb} = 8 \ M\Pi a,$$
 $(D_{222})^{m\kappa ahb} = 43000 \ M\Pi a,$ 
 $(5.33)$ 

 $(D_{120})^{m\kappa ahb} = 0.97 \text{ MHa}, (D_{330})^{m\kappa ahb} = 0.17 \text{ MHa}, (D_{334})^{m\kappa ahb} = 195 \text{ MHa},$ 

Для ткани с клеем методами идентификации были получены следующие результаты:

$$\begin{split} &(D_{110})^{m\kappa+\kappa\eta}=5.049M\Pi a, (D_{112})^{m\kappa+\kappa\eta}=4000M\Pi a, \ (D_{220})^{m\kappa+\kappa\eta}=21M\Pi a,\\ &(D_{222})^{m\kappa+\kappa\eta}=49000M\Pi a, (D_{120})^{m\kappa+\kappa\eta}=0.97M\Pi a, (D_{330})^{m\kappa+\kappa\eta}=0.26M\Pi a,\\ &(D_{334})^{m\kappa+\kappa\eta}=235M\Pi a \ . \end{split} \tag{5.34}$$

Аналогично, для флокированной ткани получены следующие жесткостные характеристики:

$$\begin{split} &(D_{110})^{\phi no\kappa}=6M\Pi a, (D_{112})^{\phi no\kappa}=4100M\Pi a, (D_{220})^{\phi no\kappa}=26M\Pi a,\\ &(D_{222})^{\phi no\kappa}=55500M\Pi a, (D_{120})^{\phi no\kappa}=0.97M\Pi a, (D_{330})^{\phi no\kappa}=0.27M\Pi a,\\ &(D_{334})^{\phi no\kappa}=235.5M\Pi a \end{split} \tag{5.35}$$

Анализ результатов и исследование экспериментальных данных показали, что линейная теория смесей не применима при осреднении свойств тканей и клея по толщине.

На рис. 5.7 и в табл. 5.3—5.6 приведены зависимости приложенной нагрузки от деформации по данным экспериментов и разработанной модели, учитывающей найденные жесткостные характеристики образцов тканей при разных углах  $\alpha$ . Штриховой линией обозначены экспериментальные зависимости, сплошной — зависимости, полученные по разработанной модели. Численные эксперименты показали, что экспериментальные кривые и кривые, полученные по разработанной модели, достаточно хорошо согласуются между собой при малых деформациях. Для больших деформаций эта модель не работает. Данные табл. 5.3—5.6 показывают, что при больших деформациях экспериментальные и теоретические значения в большинстве случаев расходятся.

Таблица 5.3. Зависимости нагрузки P от удлинения для  $\alpha = 0^{\circ}$ 

| Вид мате- | Характери-                   | Знач   | чения пр | ри относи | ительн | ом удлин | ении 🛆 | b/b    |
|-----------|------------------------------|--------|----------|-----------|--------|----------|--------|--------|
| риала     | стики и<br>размерно-<br>сти  | 0,0125 | 0,025    | 0,0375    | 0,05   | 0,0625   | 0,075  | 0,0825 |
|           | <b>Р</b> <sup>эксп</sup> , Н | 5      | 25       | 56        | 106    | 165      | 215    | 285    |
| Исходная  | $P^{Modenb}$ , Н             | 6,06   | 19,3     | 47        | 96     | 174      | 287    | 444    |
| ткань     | $\Delta P$ ,%                | 17     | 20       | 16        | 9      | 5        | 25     | 35,8   |
| _         | <b>Р</b> эксп, Н             | 13,5   | 43,5     | 90        | 150    | 220      | 270    | 372    |
| Ткань     | $P^{Modenb}$ , Н             | 14,35  | 37       | 76        | 139    | 235,5    | 372    | 559    |
| с клеем   | $\Delta P$ ,%                | 5,6    | 15       | 15,6      | 7,3    | 6,6      | 27     | 33,5   |
| Флокиро-  | <b>Р</b> эксп, Н             | 18     | 50       | 100       | 160    | 225      | 295    | 370    |
| ванная    | $P^{Modenb}$ , Н             | 17,66  | 44,59    | 90        | 163    | 273      | 430    | 643    |
| ткань     | $\Delta P$ ,%                | 1,8    | 10,8     | 10        | 1,8    | 17,6     | 31,4   | 42,5   |

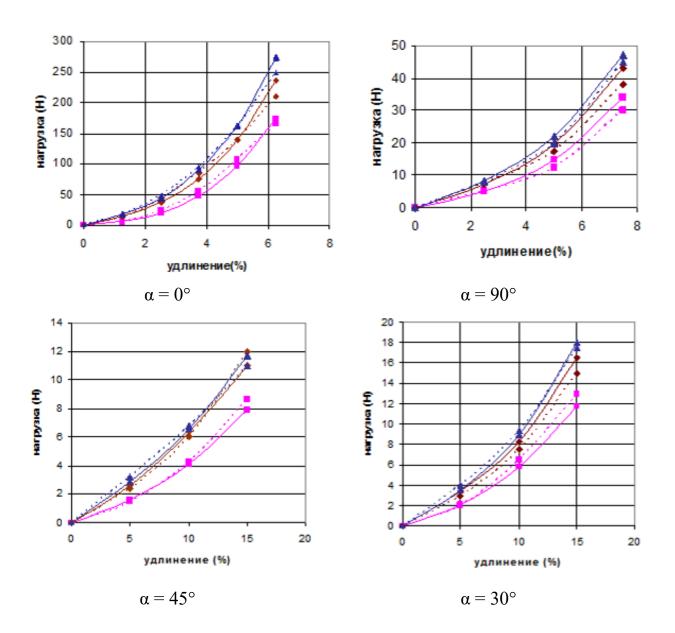



Рис. 5.7. Зависимости нагрузки от удлинения при малых деформациях:




Таблица 5.4. Зависимости нагрузки  ${\it P}$  от удлинения для  $\, \alpha = 90^{\circ} \,$ 

|                          | Характери-                      | Значения | при относ | сительном | удлинен | ии $\Delta b/b$ |
|--------------------------|---------------------------------|----------|-----------|-----------|---------|-----------------|
| Вид материала            | стики и раз-                    | 0,025    | 0,05      | 0,075     | 0,1     | 0,15            |
|                          | мерности                        |          |           |           |         |                 |
|                          | $P^{\mathfrak{s}\kappa cn}$ , H | 5        | 12,5      | 30        | 65      | 185             |
| Исходная ткань           | $P^{Modenb}$ , Н                | 5,08     | 14,9      | 34        | 67      | 194             |
|                          | $\Delta P$ ,%                   | 1,6      | 16        | 11,8      | 3       | 4,6             |
|                          | $P^{\mathfrak{s}\kappa cn}$ , H | 7,5      | 17,5      | 38        | 77,5    | 195             |
| Ткань с клеем            | $P^{Modenb}$ , Н                | 7,15     | 19,64     | 43        | 82      | 255             |
|                          | $\Delta P$ ,%                   | 4,7      | 10,9      | 11,6      | 5,5     | 23,5            |
|                          | $P^{\mathfrak{s}\kappa cn}$ , H | 8        | 20        | 45        | 90      | 195             |
| Флокирован-<br>ная ткань | $P^{Modenb}$ , Н                | 8,37     | 22        | 47        | 88,27   | 241             |
| Han Ikalib               | $\Delta P$ ,%                   | 4,4      | 9         | 4,3       | 1,9     | 19,1            |

Таблица 5.5. Зависимости нагрузки  ${\it P}$  от удлинения для  $\, \alpha = 45^{\circ} \,$ 

| Вид мате- | Характери-                      | Знач | ения при | относит | ельном уд | пинении △ | b/b  |
|-----------|---------------------------------|------|----------|---------|-----------|-----------|------|
| риала     | стики и<br>размерно-<br>сти     | 0,05 | 0,1      | 0,15    | 0,2       | 0,25      | 0,3  |
|           | $P^{\mathfrak{s}\kappa cn}$ , H | 1,8  | 4,3      | 8,6     | 15        | 37,5      | 90   |
| Исходная  | <b>Р</b> модель , Н             | 1,8  | 4        | 7,9     | 15,8      | 31        | 56,6 |
| ткань     | $\Delta P$ ,%                   | 7    | 8,1      | 1,9     | 5,1       | 17,3      | 37   |
| _         | $P^{\mathfrak{I}KCn}$ , H       | 3,7  | 5,5      | 12      | 18        | 38        | 83   |
| Ткань     | <b>Р</b> <sup>модель</sup> , Н  | 3    | 6        | 11      | 20,6      | 38        | 67   |
| с клеем   | $\Delta P$ ,%                   | 19   | 8,3      | 8,3     | 12,6      | 0         | 19   |
| Флокиро-  | $P^{\mathfrak{I}\kappa cn}$ , H | 3,5  | 7,5      | 11      | 17,5      | 32        | 63   |
| ванная    | <b>Р</b> модель , Н             | 3    | 6,3      | 11,7    | 21,8      | 40,2      | 71,8 |
| ткань     | $\Delta P$ ,%                   | 14,3 | 16       | 6       | 19,7      | 20,4      | 12,5 |

Таблица 5.6. Зависимости нагрузки  ${\it P}$  от удлинения для  $\alpha = 30^{\circ}$ 

|                | Характери-                   | Значени | я при отно | сительном | и удлинен | ни $\Delta m{b}/m{b}$ |
|----------------|------------------------------|---------|------------|-----------|-----------|-----------------------|
| Вид материала  | стики и раз-                 | 0,05    | 0,1        | 0,15      | 0,2       | 0,25                  |
|                | мерности                     |         |            |           |           |                       |
| Исходная ткань | $P^{\mathfrak{I}KCn}$ , H    | 2,5     | 6,5        | 13        | 28        | 75                    |
|                | $P^{Modenb}$ , Н             | 2,4     | 5,5        | 11,7      | 25,3      | 52                    |
|                | $\Delta P$ ,%                | 4       | 15,4       | 10        | 9,6       | 30,7                  |
| Ткань с клеем  | <b>Р</b> <sup>эксп</sup> , Н | 3,5     | 7,5        | 15        | 32        | 70                    |

| <b>Р</b> <sup>модель</sup> , Н | 3,7 | 8,3 | 16,5 | 32 | 63 |
|--------------------------------|-----|-----|------|----|----|
| $\Delta P$ ,%                  | 5,4 | 9,6 | 9,1  | 0  | 10 |

Окончание табл. 5.6

|                        | Характери-                   | Значения при относительном удлинени $\Delta oldsymbol{b}/oldsymbol{b}$ |     |       |      |      |
|------------------------|------------------------------|------------------------------------------------------------------------|-----|-------|------|------|
| Вид материала          | стики и раз-                 | 0,05                                                                   | 0,1 | 0,15  | 0,2  | 0,25 |
|                        | мерности                     |                                                                        |     |       |      |      |
| Флокированная<br>ткань | <b>Р</b> <sup>эксп</sup> , Н | 4                                                                      | 10  | 15    | 30   | 60   |
|                        | $P^{Modenb}$ , Н             | 3,5                                                                    | 8,7 | 17,44 | 35   | 67,7 |
|                        | $\Delta P$ ,%                | 12,5                                                                   | 13  | 14    | 14,3 | 11,4 |

На основе полученных жесткостных характеристик были проведены численные эксперименты для исходной и флокированной тканей. В качестве жесткостных характеристик  $D_{ijk}$  в выражении (5.12) приняты реальные их значения (5.31). На *рис.* 5.8 изображены зависимости усилия растяжения от деформации для образцов флокированной ткани с жесткостными характеристиками, полученными по теории смесей. Расчеты производились для образцов, вырезанных под различными углами к основе при различных удельных площадях клея  $A_{\kappa neg}$ .

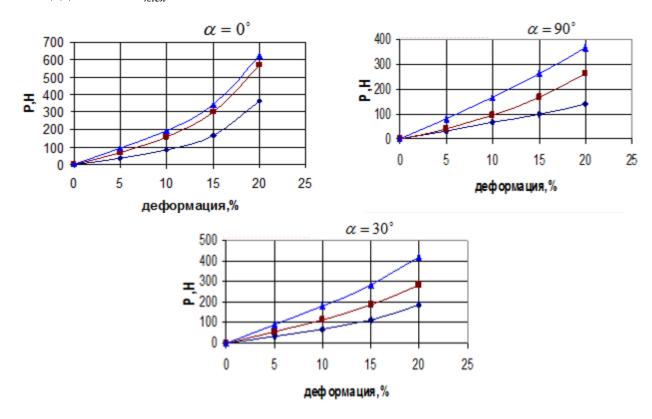



Рис. 5.8. Зависимости усилия P от деформации  $\Delta b$  для образцов, вырезанных при разных углах  $\alpha$  для флокированной ткани с различными удельными площадями  $A_{\kappa neg}$ :

Полученные результаты показывают, что жесткость флокированной ткани возрастает при увеличении доли площади флокированной части, причём жёсткость в направлении основы повышается в меньшей степени: в 1,5 раза при  $A_{\kappa neg} = 90$  %, в сравнении с повышением жёсткости вдоль утка при том же заполнении — в 3 раза.

Ниже приведены картины деформирования образцов ткани, полученные на основе решения задач по разработанной модели. Численные эксперименты проводились при следующих граничных условиях (*puc.* 5.9):

- 1) торец АВ закреплен в обоих направлениях;
- 2) торец CD закреплен в вертикальном направлении;
- 3) задано перемещение торца CD.

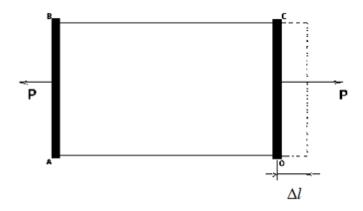



Рис. 5.9. Образец ткани в плоском напряженном состоянии при простом растяжении

На *рис.* 5.10–5.13 представлены картины деформирования образцов ткани, вырезанных под различными углами к основе. Анализ этих рисунков показал, что построенная конечно-элементная модель не противоречит известным представлениям о деформировании тканей.

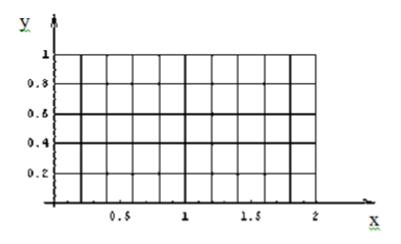



Рис. 5.10. Исходный ненагруженный образец

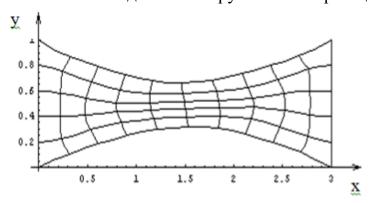



Рис. 5.11. Образец в растянутом состоянии (основа под углом  $\alpha = 45^{\circ}$ к оси x)

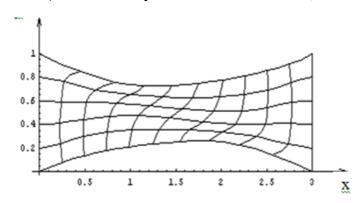



Рис. 5.12. Образец в растянутом состоянии (основа под углом  $\alpha = 30^{\circ}$  к оси x)

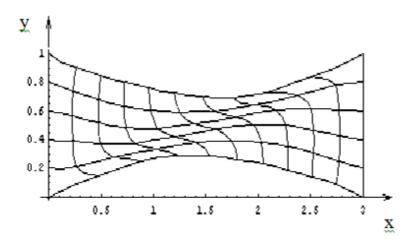
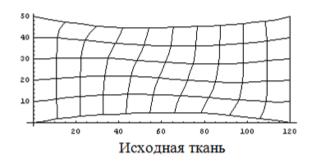
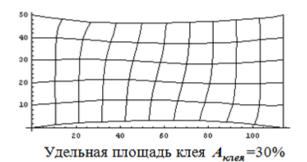
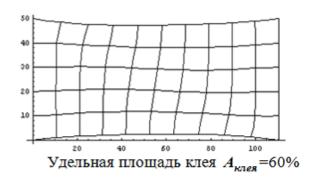






Рис. 5.13. Образец в растянутом состоянии (основа под углом  $\alpha = 60^{\circ}$  к оси x)

На puc.~5.14 изображены графики деформирования нефлокированного и флокированных образцов, вырезанных под углом  $\alpha=30^{\circ}$  к основе. Условия этого численного эксперимента: зажимная длина a=100 мм, ширина b=50 мм, усилие P=33,3 H.










Рис. 5.14. Картина деформирования образца, вырезанного под углом  $\alpha = 30^0$  к основе, при растяжении силой P

Полученные результаты не противоречат известным представлениям о характере деформирования как флокированных, так и нефлокированных тканей. Видно, что жёсткость флокированной ткани возрастает при увеличении удельной площади клея, а деформируемость ее падает, причём изменение формы прямоугольного образца ткани становится менее выраженным [163].

## 5.1.7. Определение зависимости жесткостных характеристик флокированной ткани от толщины слоя клея

Как показала предварительная обработка экспериментальных данных при определении жесткости флокированной ткани путем осреднения жесткостей ткани и клея по толщине, линейная теория смесей (5.26) не работает. Поэтому для получения соотношений для вычисления жесткости флокированной ткани в зависимости от толщины клея необходимо применить другие подходы. Наиболее простым является метод разложения этих соотношений в ряд по степеням толщины сырого клея  $h^{\kappa ne \tilde{u}}$ .

Из вышеприведенных экспериментальных данных получены жесткостные характеристики для двух материалов: исходной ткани и ткани, у которой толщина сырого клея  $h^{\kappa net}$  составляет 0.2 мм. Таким образом, в нашем случае мы имеем две серии экспериментов. Поэтому используем полином 1-го по-242

рядка. Жесткостные характеристики для флокированной ткани при различных исходных значениях толщины сырого клея можно представить в виде

$$\begin{split} D_{11}(h^{\kappa_{1}e\check{u}},\varepsilon_{11}) &= (D_{110}^{m\kappa_{2}h_{b}} + D_{112}^{m\kappa_{2}h_{b}}\varepsilon_{11}^{2}) \cdot \frac{h_{3}^{\kappa_{1}e\check{u}} - h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}} + D_{11}^{\phi}(h_{3}^{\kappa_{1}},\varepsilon_{11}) \cdot \frac{h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}}, \\ D_{22}(h^{\kappa_{1}e\check{u}},\varepsilon_{22}) &= (D_{220}^{m\kappa_{2}h_{b}} + D_{222}^{m\kappa_{2}h_{b}}\varepsilon_{22}^{2}) \cdot \frac{h_{3}^{\kappa_{1}e\check{u}} - h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}} + D_{22}^{\phi}(h_{3}^{\kappa_{1}},\varepsilon_{22}) \cdot \frac{h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}}, \end{split} (5.36)$$

$$D_{33}(h^{\kappa_{1}e\check{u}},\gamma_{12}) &= (D_{330}^{m\kappa_{2}h_{b}} + D_{334}^{m\kappa_{2}h_{b}}\gamma_{22}^{4}) \cdot \frac{h^{\kappa_{1}e\check{u}} - h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}} + D_{33}^{\phi}(h_{3}^{\kappa_{1}},\gamma_{12}) \cdot \frac{h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}} \\ D_{12}(h^{\kappa_{1}e\check{u}}) &= D_{120}^{m\kappa_{2}h_{b}} \cdot \frac{h^{\kappa_{1}e\check{u}} - h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}} + D_{12}^{\phi}(h_{3}^{\kappa_{1}}) \cdot \frac{h^{\kappa_{1}e\check{u}}}{h_{3}^{\kappa_{1}e\check{u}}}, \end{split}$$

где  $h^{\kappa n e \check{u}}$  — толщина сырого клея,  $h_{3}^{\kappa n e g} = 0,2$  мм — это толщина сырого клея по проведенному эксперименту.

Для нашего случая соотношения (5.36) примут вид

$$\begin{split} &D_{11}(h^{\kappa n e \check{u}}, \varepsilon_{11}) = [(8 + 43000 \varepsilon_{11}^2) \cdot \frac{0.2 - h^{\kappa n e \check{u}}}{0.2 \text{MM}} + (26 + 55500 \varepsilon_{11}^2) \cdot \frac{h^{\kappa n e \check{u}}}{0.2 \text{MM}}] \, M\Pi a \,, \\ &D_{22}(h^{\kappa n e \check{u}}, \varepsilon_{22}) = [(3.5 + 3500 \varepsilon_{22}^2) \cdot \frac{0.2 - h^{\kappa n e \check{u}}}{0.2 \text{MM}} + (6 + 4100 \varepsilon_{22}^2) \cdot \frac{h^{\kappa n e \check{u}}}{0.2 \text{MM}}] \, M\Pi a \,, \\ &D_{33}(h^{\kappa n e \check{u}}, \gamma_{12}) = [(0.17 + 194.5 \gamma_{12}^4) \cdot \frac{0.2 - h^{\kappa n e \check{u}}}{0.2 \text{MM}} + (0.27 + 235.5 \gamma_{12}^4) \cdot \frac{h^{\kappa n e \check{u}}}{0.2 \text{MM}}] \, M\Pi a \,, \\ &D_{12}(h^{\kappa n e \check{u}}) = [0.978 \cdot \frac{0.2 - h^{\kappa n e \check{u}}}{0.2 \text{MM}} + 0.978 \cdot \frac{h^{\kappa n e \check{u}}}{0.2 \text{MM}}] \, M\Pi a \,. \end{split}$$

Теперь можно жёсткость флокированной ткани получить и при других толщинах сырого клея  $h^{\kappa n e \tilde{u}}$ . Для получения более точных соотношений  $D_{ij}(h^{\kappa n e \tilde{u}}, \varepsilon_{ij})$  необходимо провести дополнительные эксперименты при других  $h^{\kappa n e \tilde{u}}$ , отличающихся от  $h^{\kappa n e \tilde{u}} = 0.2$  мм. После этого, определив жесткостные характеристики флокированной ткани  $D_{ij}^{\phi nok.mk.2}$  изложенным выше методом, при получении соотношений для вычисления жесткостей можно использовать интерполяционный полином Лагранжа. Например, полином 2-го порядка имеет вид

$$D_{ij}^{\phi_{\mathcal{N}\mathcal{K},MK}} = D_{ij}^{m\kappa} \cdot \frac{(h_2 - h)(h_1 - h)}{(h_2 - h_0)(h_1 - h_0)} + D_{ij}^{\phi_{\mathcal{N}\mathcal{K},MK},l} \cdot \frac{(h_2 - h)(h_0 - h)}{(h_2 - h_1)(h_0 - h_1)} + D_{ij}^{\phi_{\mathcal{N}\mathcal{K},MK},2} \cdot \frac{(h_1 - h)(h_0 - h)}{(h_1 - h_2)(h_0 - h_2)} \cdot (5.38)$$

Ясно, что полученные коэффициенты в формуле (5.37) справедливы лишь для конкретных сырьевых компонентов, поскольку они получены для исследованной ткани и данного вида клея.

#### 5.2. Математическая модель драпируемости флокированной ткани

### **5.2.1.** Математическая модель поведения флокированной ткани при изгибе

Для оценки складкообразующей способности, или драпируемости, флокированных тканей использованы экспериментальные исследования жёсткости методом консоли [164]. С математической точки зрения основной характеристикой складки является величина радиуса кривизны  $\rho$  над опорой (puc. 5.15).

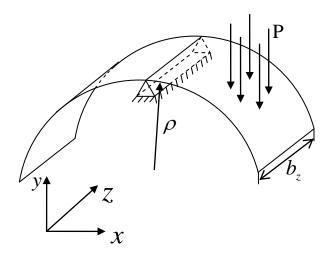
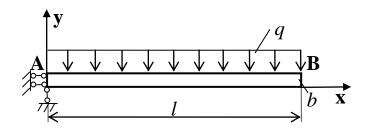




Рис. 5.15. Изгиб ткани под собственным весом

Механико-математическая модель процесса складкообразования представляется как прогиб образца ткани, лежащего на линейной опоре (столике прибора), под действием распределенной нагрузки. Данная задача является симметричной, поэтому рассматривается лишь половина геометрии. Тогда провисание половинки образца под тяжестью собственного веса можно представить как закрепленную пластину под действием распределенной нагрузки (рис. 5.16). При такой схеме нагружения наибольший прогиб возникает на правом торце.



#### Рис. 5.16. Схема нагружения

Так как ткани обладают малой жесткостью, то возникает большое провисание образца (т. е. большие перемещения), и потому необходимо использовать подход, в котором учитывается изменение направления действия сил по отношению к плоскости образца, т. е. должна решаться так называемая геометрически нелинейная задача. Для учета изменения направления действия сил задача решается методом последовательных малых изменений геометрии образца, т. е. прослеживается процесс деформирования во времени.

Тензор деформации Грина  $T_{\varepsilon}$ , который в общем случае имеет 9 компонент, задан в виде

$$T_{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}$$
 (5.39)

Примечанние. Здесь  $\varepsilon_{xx}$ ,  $\varepsilon_{yy}$  – аналоги относительного удлинения в направлениях осей x и y, соответственно (puc.~5.17);  $\gamma_{xy}$  – это синус угла сдвига образца в плоскости xy (puc.5.18), и т. д.

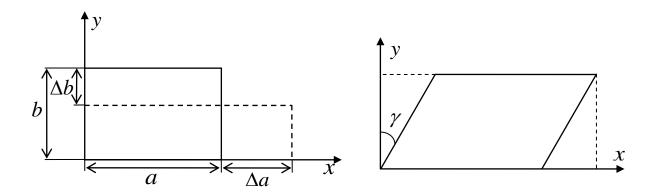



Рис. 5.17. Относительное удлинение в направлениях осей *x* и *y* 

Рис. 5.18. Сдвиг образца в плоскости *ху* 

В соответствии с принятой моделью, изображенной на *рис.* 5.15, можно считать, что в плоскости XZ деформации пренебрежимо малы, то есть рассматривается плоское деформированное состояние. Это означает, что деформированное состояние образца можно описать с помощью только трёх компонент тензора деформации, так как остальные равны нулю:

$$\varepsilon_{xz} = 0, \ \varepsilon_{yz} = 0, \ \varepsilon_{zz} = 0.$$
 (5.40)

В дальнейшем для удобства записи вводится векторно-матричное обозначение. Например, вектор деформаций имеет следующие компоненты:

$$\left\{\varepsilon\right\}^{T} = \left\{\varepsilon_{xx}, \varepsilon_{yy}, \gamma_{xy}\right\}. \tag{5.41}$$

Зависимость между деформациями и перемещениями записывается в виде

$$\varepsilon_{xx} = \frac{\partial u}{\partial x} + \frac{1}{2} \left[ \left( \frac{\partial u}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial x} \right)^2 \right],$$

$$\varepsilon_{yy} = \frac{\partial v}{\partial y} + \frac{1}{2} \left[ \left( \frac{\partial u}{\partial y} \right)^2 + \left( \frac{\partial v}{\partial y} \right)^2 \right],$$

$$\gamma_{xy} = \frac{1}{2} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) + \frac{1}{2} \left[ \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \cdot \frac{\partial v}{\partial y} \right].$$
(5.42)

Тогда вектор деформации можно представить в виде линейной и нелинейной частей:

$$\{\varepsilon\} = \{\varepsilon\}^{\text{лин}} + \{\varepsilon\}^{\text{нелин}}, \tag{5.43}$$

где 
$$\{\varepsilon\}^{nuh} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases}^{nuh} = \begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{1}{2} \left( \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \end{cases}$$

$$\left\{ \varepsilon \right\}^{\text{He-NUH}} = \begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{cases}^{\text{He-NUH}} = \begin{cases} \frac{1}{2} \left[ \left( \frac{\partial u}{\partial x} \right)^2 + \left( \frac{\partial v}{\partial x} \right)^2 \right] \\ \frac{1}{2} \left[ \left( \frac{\partial u}{\partial y} \right)^2 + \left( \frac{\partial v}{\partial y} \right)^2 \right] \\ \frac{1}{2} \left[ \frac{\partial u}{\partial x} \cdot \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \cdot \frac{\partial v}{\partial y} \right] \end{cases}$$
(5.44)

Здесь u, v — это перемещения точки в образце вдоль осей x и y, соответственно ( $puc.\ 5.19$ ). В случае малых перемещений нелинейной частью век-

тора деформаций можно пренебречь, при больших перемещениях нелинейные слагаемые вносят существенный вклад.

*Примечание.* При простом растяжении  $\sigma_{xx}$  – это давление, приходящееся на площадку  $S_x$ , уменьшенное в  $(1+e_x)$  раз. Аналогично,  $\sigma_{yy}$  – давление, приходящееся на площадку  $S_y$ , уменьшенное в  $(1+e_y)$  раз (*puc. 5.20*).

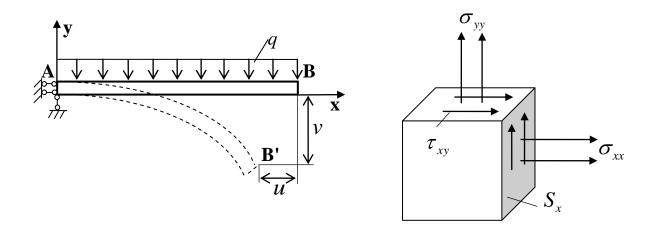



Рис. 5.19. Схема перемещения конечной точки образца при игибе

Рис. 5.20. Тензор напряжений

В качестве тензора напряжений, согласованных с тензором деформаций Грина, должен использоваться второй тензор напряжений Пиолы:

$$\left\{\sigma\right\}^{T} = \left\{\sigma_{xx}, \sigma_{yy}, \tau_{xy}\right\}. \tag{5.45}$$

Для анализа напряженно деформированного состояния используется принцип виртуальной работы в приращениях:

$$\int_{V} \{\Delta\sigma\}^{T} \delta\{\Delta\varepsilon\} dV = \int_{S_{\sigma}} \{\Delta P\}^{T} \delta\{\Delta u\} dS, \qquad (5.46)$$

где  $\Delta$  — это знак приращения,  $\{\Delta P\}$  — вектор приращения внешних сил, приложенных на  $\{S_{\sigma}\}$  (рис. 5.19),  $\{\Delta u\}$  — вектор приращения перемещений.

Физические соотношения принимаем в виде:

$$\{\Delta\sigma\} = [D]\{\Delta\varepsilon\}. \tag{5.47}$$

Здесь матрица упругих характеристик [D] имеет следующие ненулевые компоненты:

$$\begin{bmatrix} D \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{33} \end{bmatrix},$$
(5.48)

где  $D_{ij}$  – жесткостные характеристики материала.

Однако для нашего случая можно отыскивать лишь одну неизвестную жёсткость. Действительно, известно, что при вычислении энергии элементов тела в выражении (5.43) существенными являются лишь напряжения  $\sigma_{xx}$  в направлении оси Ox при любых значениях  $D_{ij}$ , так как  $\gamma_{xy} \approx 0$  и  $\sigma_{yy} \approx 0$ . Это подтвердили и численные расчеты по разработанной численной методике. Из этих условий вытекает, что можно принимать любые значения для  $D_{ij}$ , кроме  $D_{11}$ . Далее, из (5.44), (5.45) и второго условия получаем

$$D_{21}\varepsilon_{xx} + D_{22}\varepsilon_{yy} = 0. ag{5.49}$$

Выражая  $\varepsilon_{yy}$  через  $\varepsilon_{xx}$  и подставляя в (5.44), получим

$$\sigma_{xx} = (D_{11} - D_{21}D_{12}/D_{22})\varepsilon_{xx}. \tag{5.50}$$

Будем в дальнейшем использовать обозначение

$$D_{11}^{0} = (D_{11} - D_{21}D_{12}/D_{22}). (5.51)$$

Теперь физические соотношения (5.44), (5.45) можно записать в виде

$$\{\Delta\sigma\} = [\mathcal{D}]\{\Delta\varepsilon\},$$

$$\begin{bmatrix} \mathcal{D} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathcal{D}_{11}^{0} & 0 & 0 \\ 0 & \mathcal{D}_{22}^{0} & 0 \\ 0 & 0 & \mathcal{D}_{33}^{0} \end{bmatrix}.$$
(5.52)

Здесь и в дальнейшем значения  $\mathcal{D}_{22}^{0}$ ,  $\mathcal{D}_{33}^{0}$  можно принимать произвольными, как сказано выше. Далее принято, что  $\mathcal{D}_{22}^{0} = \mathcal{D}_{33}^{0} = \mathcal{D}_{11}^{0}$ .

Для отыскания  $\mathcal{D}_{11}^{\prime\prime}$  можно использовать только методы идентификации (поскольку нет конечных формул, связывающих прогиб ткани с ее весом). Он основан на методике минимизации невязки между экспериментальными и расчетными значениями максимального перемещения. Для вычисления перемещений необходимо иметь метод решения задачи изгиба пластины. Он излагается ниже.

# **5.2.2.** Численная методика решения задачи отыскания перемещений и кривизны образца ткани

Сначала рассмотрим задачу отыскания перемещений. Дискретизация задачи по пространственным координатам осуществляется методом конечных элементов, в качестве которых приняты шестиузловые треугольные элементы с квадратичной аппроксимацией перемещений. Для численного интегрирования по параметру нагрузки применяется метод Эйлера. Процесс деформирования представляется в виде последовательности равновесных состояний, а переход от предыдущего состояния к последующему происходит путем приращения нагрузки. Суть методики расчета состоит в вычислении последующего состояния при известных параметрах процесса предыдущего состояния.

При компьютерной реализации данного метода расчёта для дискретизации области использовались шестиузловые конечные элементы. Рассматриваемый образец (рис. 5.21) состоит из двух слоёв: из ткани, пропитанной клеем и из слоя клея. Поэтому по высоте образец делится на два ряда конечных элементов, т. е. каждый слой образца разбивается на конечные элементы по отдельности. Число элементов по горизонтали можно варьировать. Нумерация узлов представлена на рис. 5.22, а нумерация элементов — на рис. 5.23.

Численная методика и программа были протестированы на имеющей аналитическое решение задаче об изгибе балки в кольцо (*puc.* 5.28) под действием момента.

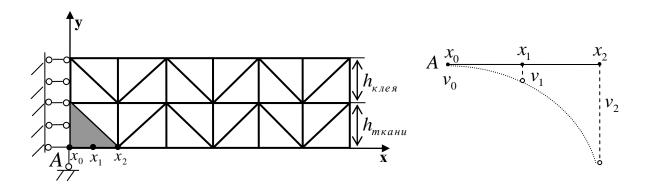
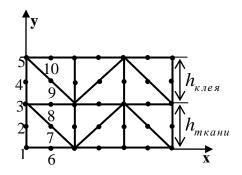




Рис. 5.21. Схема шестиузлового конечного элемента



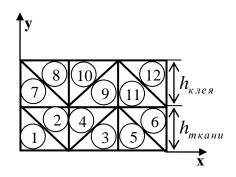



Рис. 5.22. Нумерация узлов

Рис. 5.23. Нумерация элементов

Далее рассмотрим задачу вычисления кривизны образца ткани. Так как для исследования способности ткани к складкообразованию необходимо знать кривизну пластины лишь над опорой, изображенной на *puc.* 5.15, то далее излагается методика ее вычисления. Кривизна пластины определяется по формуле

$$\frac{1}{\rho} = \frac{v''}{\sqrt{\left(\left(v'\right)^2 + 1\right)^3}},\tag{5.53}$$

где v — перемещение точки образца (прогиб), штрихом обозначена производная по x.

Первой производной можно пренебречь, так как угол наклона над опорой близок к нулю. Тогда

$$\frac{1}{\rho} \approx v^{"}. \tag{5.54}$$

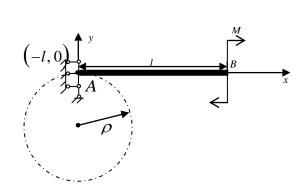



Рис. 5.24. Изгиб балки сосредоточенным моментом M

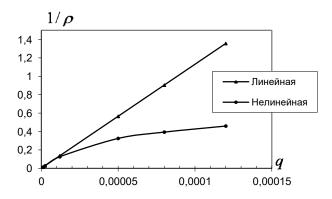



Рис. 5.25. Зависимость кривизны пластины над опорой  $1/\rho$  от веса пластины по геометрически линейной и нелинейной теориям

Аппроксимацию прогиба изогнутой ткани можно получить по интерполяционной формуле Лагранжа по известным значениям прогиба в трех точках. Рассмотрим конечный элемент над опорой (на рис. 5.24 точка A). Три узла этого конечного элемента, принадлежащие нижней грани пластины, имеют координаты  $x_0$ ,  $x_1$ ,  $x_2$ . Под тяжестью собственного веса пластина прогибается, и узлы получают вертикальные перемещения  $v_0$ ,  $v_1$ ,  $v_2$  ( $v_0 = 0$ , так как в точке A имеется заделка). Тогда уравнение изогнутой оси определяется интерполяционным многочленом Лагранжа, записанным для трех узлов:

$$v = v_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + v_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + v_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$
(5.55)

Учитывая, что точка A имеет координату  $x_0 = 0$ , и перемещения в этой точке отсутствуют ( $v_0 = 0$ ), уравнение изогнутой пластины можно упростить:

$$v = v_1 \frac{x(x - x_2)}{x_1(x_1 - x_2)} + v_2 \frac{x(x - x_1)}{x_2(x_2 - x_1)}.$$
 (5.56)

Вторая производная v " тогда равна

$$v'' = \frac{2v_2x_1 - 2v_1x_2}{-x_1^2x_2 + x_1x_2^2} = \frac{1}{\rho}.$$
 (5.57)

Сравнение решений задачи, изображенной на puc.~5.24, по геометрически линейной и нелинейной теориям показало, что учет геометрической нелинейности даёт результаты, количественно сильно отличающиеся от результатов, полученных по линейной теории (puc.~5.25, где  $1/\rho$  — кривизна ткани над опорой). Таким образом, при моделировании процесса складкообразования действительно необходимо использовать геометрически нелинейную теорию изгиба ткани.

Далее рассмотрим задачу изгиба флокированной ткани. Клей, нанесенный на ткань, увеличивает жесткостные характеристики композита, что должно приводить к уменьшению кривизны складки, при этом возрастает и нагрузка, так как увеличивается вес ткани. Это должно приводить к увеличению кривизны складки. Взаимодействие этих двух тенденций может быть исследовано только после анализа экспериментов. Однако решение модельных задач может дать некоторую качественную информацию. Например, зависимость кривизны гипотетической ткани от толщины клея отражена на *рис*. 5.26. Из нее следует, что жесткость флокированной ткани растет быстрее, чем ее вес. Поэтому кривизна складки уменьшается при увеличении толщины клея  $h_{\kappa res}$ .

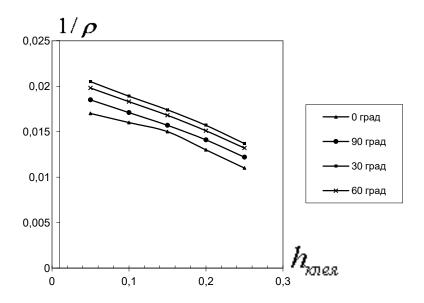



Рис. 5.26. Качественная картина зависимости кривизны пластины над опорой  $1/\rho$  от толщины клея  $h_{\kappa neg}$  по стандартной модели композита ткань + клей

Для расчета кривизны по разработанной модели должны быть известны следующие исходные данные: линейные размеры образцов, толщина клеевого слоя, толщина ткани, удельные плотности или удельные веса ткани и клея, механические характеристики ткани и клея. Ниже излагается методика отыскания жесткостных характеристик ткани и клеевого слоя.

# 5.2.3. Методика экспериментального определения жесткостных характеристик ткани и клеевого слоя

Экспериментальные данные получены на следующих материалах: исходная ткань (основа), ткань с нанесённым и высушенным клеем и флокированная ткань (т. е. ткань после нанесения клея, флокирования и сушки).

- 1. Ткань полотняного переплетения (хлопок с ВПЭ 40 %) поверхностной плотностью  $97 \text{ г/м}^2$ , толщиной 0.15 мм.
- 2. Ткань, покрытая клеем и высушенная. Поверхностная плотность  $170~{\rm г/m^2}$ , толщина  $0.20~{\rm mm}$ .
- 3. Флокированная ткань поверхностной плотностью 256 г/м², толщиной 0.65 мм.

Испытания жёсткости проводились на приборе ПТ-2 методом консоли. Стрелу прогиба измеряли на образцах, вырезанных в четырех направлениях: по основе (т. е. 0°), под углом 30° к основе, под углом 45° к основе и по утку (90°). В каждом направлении испытывали образцы трех длин: 160, 120 и 80 мм. Ширина всех образцов 30 мм. Если учесть, что столик прибора имеет ширину 20 мм, а образец укладывают на столик посередине длины, то длина свешивающихся концов симметрично расположенного образца составляет: (160 - 20) : 2 = 70 (мм), (120 - 20) : 2 = 50 (мм) и (80 - 20) : 2 = 30 (мм). Результаты средних значений прогиба представлены в maбn. 5.7.

Таблица 5.7. Экспериментальные значения величины прогиба

| Длина испытанных    | Значения величины прогиба в миллиметрах для полосок, |          |      |      |  |  |
|---------------------|------------------------------------------------------|----------|------|------|--|--|
| образцов, мм        | вырезанных под углом к основе, град.                 |          |      |      |  |  |
|                     | 0                                                    | 30       | 45   | 90   |  |  |
|                     | Исходн                                               | ая ткань |      |      |  |  |
| 160                 | 65,4                                                 | 67,3     | 63,8 | 66,5 |  |  |
| 120                 | 42,8                                                 | 45,5     | 45,9 | 46,5 |  |  |
| 80                  | 13,7                                                 | -        | 21,3 | 20,0 |  |  |
| Ткань с клеем       |                                                      |          |      |      |  |  |
| 160                 | 65,5                                                 | 66,0     | 66,0 | 67,0 |  |  |
| 120                 | 42,5                                                 | 44,5     | 45,3 | 46,0 |  |  |
| 80                  | -                                                    | 16,5     | 17,6 | 19,5 |  |  |
| Флокированная ткань |                                                      |          |      |      |  |  |
| 160                 | 66,0                                                 | -        | 67,0 | 67,0 |  |  |
| 120                 | 44,8                                                 | -        | 46,5 | 46,2 |  |  |
| 80                  | 17,8                                                 | -        | 21,0 | 20,9 |  |  |

Клей наносили с помощью сетчатого шаблона, толщина сетки -0.2 мм, т. е. толщина нанесения «сырого» клея не менее 0.2 мм, после высыхания -0.1 мм. В то же время разница в толщинах ткани с клеем и исходной ткани составляет 0.05 мм, поскольку клей частично пропитывает ткань.

Флокированную ткань характеризует изгибная жесткость  $\mathcal{D}_{11}^{0}$ , которая в физически нелинейном случае будет

$$\left(D_{11}^{\text{Menuh}}\right)_{m\kappa a \mu u} = D_{110} + D_{111} \frac{1}{\rho} + D_{112} \frac{1}{\rho^2} + \dots,$$
 (5.58)

где  $\rho$  – радиус кривизны образца при изгибе.

Наибольшая кривизна в образце при изгибе под тяжестью собственного веса возникает над опорой и, следовательно, слагаемые с множителями  $\frac{1}{\rho},\,\frac{1}{\rho^2},$ 

... могут вносить значительный вклад в величину  $\left(D_{11}^{\text{нелин}}\right)_{\text{мкани}}$ . Значит, в общем случае этими слагаемыми в соотношении (5.51) нельзя пренебречь. Однако для оценок изменения кривизны можно принять за основу это линейное соотношение (ввиду малости тангенциальных деформаций, несмотря на большие перемещения), т. е принять:

$$\left(D_{11}\right)_{m\kappa a\mu\nu} \approx D_{110} \tag{5.59}$$

Как было впоследствии выяснено из анализа экспериментальных данных, это предположение подтвердилось с большой точностью. Метод определения жесткостных характеристик флокированной ткани состоит из трёх этапов.

Первый этап. Определение жесткостных характеристик ткани

Для данного этапа проводится эксперимент о провисании образца исходной ткани и замеряется максимальный прогиб правого торца. Далее используется известная методика численного решения задачи об изгибе этого образца. В нашем случае методом конечных элементов решается задача об изгибе закрепленной ткани под действием распределенной нагрузки q (см. puc. 5.15) для образцов длиной 70, 50 и 30 миллиметров,

где 
$$q = \frac{\sec o \delta p a 3 \mu a}{n \pi o \mu a \partial b o \delta p a 3 \mu a}, \left[q\right] = \left[\frac{H}{m M^2}\right].$$
 (5.60)

Методика отыскания  $\left(D_{11}\right)_{\mathit{мкани}}$  заключается в минимизации погрешности путем подбора  $\left(D_{110}\right)_{\mathit{mкани}}$ . То есть необходимо найти такое значение упругой характеристики ткани  $\left(D_{110}\right)_{\mathit{mкани}}$ , при котором отличие между экспериментальным и численным значениями максимальных прогибов ткани будет минимальным.

$$\delta^{2} = \frac{\left(\left(u_{y}^{9\kappa cn}\right)_{m\kappa a \mu u}^{ax=30} - \left(u_{y}^{9u cn}\right)_{m\kappa a \mu u}^{ax=30}\right)^{2}}{\left(\left(u_{y}^{9\kappa cn}\right)_{m\kappa a \mu u}^{ax=30}\right)^{2}} + \frac{\left(\left(u_{y}^{9\kappa cn}\right)_{m\kappa a \mu u}^{ax=50} - \left(u_{y}^{9u cn}\right)_{m\kappa a \mu u}^{ax=50}\right)^{2}}{\left(\left(u_{y}^{9\kappa cn}\right)_{m\kappa a \mu u}^{ax=50}\right)^{2}} + \frac{\left(\left(u_{y}^{9\kappa cn}\right)_{m\kappa a \mu u}^{ax=70} - \left(u_{y}^{9u cn}\right)_{m\kappa a \mu u}^{ax=70}\right)^{2}}{\left(\left(u_{y}^{9\kappa cn}\right)_{m\kappa a \mu u}^{ax=70}\right)^{2}}, (5.61)$$

Процесс минимизации погрешности реализован в виде следующего алгоритма.

Шаг 1. Задается начальное значение упругой характеристики ткани  $\left(D_{110}\right)_{mканu}^{0}$  и находятся соответствующее численное значение прогиба  $\left[\left(u_{y}^{uucn}\right)_{mканu}^{ax=30}\right]^{0}$ ,  $\left[\left(u_{y}^{uucn}\right)_{mканu}^{ax=50}\right]^{0}$ ,  $\left[\left(u_{y}^{uucn}\right)_{mканu}^{ax=70}\right]^{0}$ . Далее вычисляется величина погрешности:

$$\delta_{0}^{2} = \frac{\left(\left(u_{y}^{3\kappa cn}\right)_{m\kappa a \mu u}^{ax=30} - \left[\left(u_{y}^{uucn}\right)_{m\kappa a \mu u}^{ax=30}\right]^{0}\right)^{2}}{\left(\left(u_{y}^{3\kappa cn}\right)_{m\kappa a \mu u}^{ax=30}\right)^{2}} + \frac{\left(\left(u_{y}^{3\kappa cn}\right)_{m\kappa a \mu u}^{ax=50} - \left[\left(u_{y}^{uucn}\right)_{m\kappa a \mu u}^{ax=50}\right]^{0}\right)^{2}}{\left(\left(u_{y}^{3\kappa cn}\right)_{m\kappa a \mu u}^{ax=30}\right)^{2}} + K$$
 (5.62)

На первом шаге полученная величина погрешности условно считается минимальной, и искомая величина принимается равной начальной  $\left(D_{110}^{_{\it пин}}\right)_{_{\it пкани}}^{0}$ , т. е.

$$MIN_{-}\delta^2 = \delta_0^2, \tag{5.63}$$

$$(MIN _D_{110})_{m\kappa a \mu u} = (D_{110})_{m\kappa a \mu u}^0.$$
 (5.64)

Шаг 2. Необходимо вычислить значение погрешности для «соседних» значений упругих характеристик. В данной методике для вычисления «соседних» значений используется тригонометрическая зависимость: + K.

$$(D_{110})_{m\kappa a \mu u}^{k} = (MIN \_D_{110})_{m\kappa a \mu u} \cdot \left(1 + p Sin\left(k \cdot \frac{\pi}{2}\right)\right),$$
 (5.65)

где p — это шаг изменения, k — это количество «соседних значений» (k = 3).

При 
$$k=1$$
 получаем  $\left(D_{110}\right)_{mкани}^{1} = \left(MIN\_D_{110}\right)_{mкани} + p$  , т. к.  $Sin\left(\frac{\pi}{2}\right) = 1$  ,  $k=2$  —  $\left(D_{110}\right)_{mкани}^{2} = \left(MIN\_D_{110}\right)_{mкани}$  , т. к.  $Sin(\pi) = 0$  ,  $k=3$  —  $\left(D_{110}\right)_{mкани}^{3} = \left(MIN\_D_{110}\right)_{mкани} - p$  , т. к.  $Sin\left(\frac{3\pi}{2}\right) = -1$  .

Для каждого значения упругой характеристики находится своя величина погрешности и сравнивается с минимальным значением. Если новая погрешность  $\delta_k^2$  меньше минимальной, то значениям минимальной погрешности  $MIN_-\delta^2$  и упругой характеристики  $(MIN_-D_{110})_{mкани}$  присваиваются новые значения:

$$MIN_{-}\delta^2 = \delta_k^2, \tag{5.66}$$

$$(MIN_{-}D_{110})_{m\kappa a\mu u} = (D_{110})_{m\kappa a\mu u}^{k}.$$
 (5.67)

Шаг 3. Процедура шага 2 повторяется до тех пор, пока величина погрешности не перестанет меняться существенно. Тогда мы получим некоторое приближение к искомой величине  $\left(D_{110}\right)_{mкани}^*$ .

Данную величину можно уточнить, если повторить шаг 2 для меньшего значения  $p_1 < p$ . Схематично данный процесс представлен на puc. 5.27.

Таким образом, на данном этапе на основе экспериментальных данных о провисании нефлокированной ткани будет получена жесткостная характеристика ткани  $\left(D_{110}\right)_{mкани}^*$ . Данная жесткостная характеристика по данному алгоритму определяется отдельно для образцов ткани, вырезанных под разными углами  $(0^{\circ}, 30^{\circ}, 45^{\circ}, 90^{\circ})$  к основе:

$$(D_{110})_{m\kappa\mu\mu}^{0^{\circ*}}, (D_{110})_{m\kappa\mu\mu}^{30^{\circ*}}, (D_{110})_{m\kappa\mu\mu\mu}^{45^{\circ*}}, (D_{110})_{m\kappa\mu\mu\mu}^{90^{\circ*}}.$$
 (5.68)

Второй этап. Определение жесткостных характеристик клея

На втором этапе рассматривается ткань, пропитанная клеем, на поверхности которой имеется дополнительный слой клея. Матрицу упругих характеристик для ткани, пропитанной клеем, примем в виде

$$D_{110}^{\textit{mкань}+\textit{клей}} = \left(D_{110}^{\textit{mкани}} + V_{\textit{клея}} \cdot D^{\textit{клея}}\right), \tag{5.69}$$

где  $D_{110}^{m\kappa anb+\kappa neŭ}$  — жесткостная характеристика ткани, пропитанной клеем;  $D_{110}^{m\kappa anu}$  — жесткость ткани, зависящая от направления основы в образце;  $D^{\kappa neg}$  — жесткость клея;

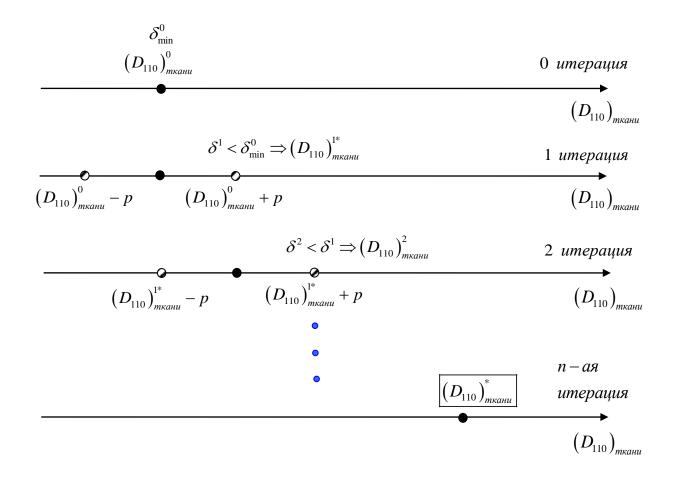



Рис. 5.27. Схема последовательности определения жесткостной характеристики ткани

Таким образом, принимаем, что клей является изотропным материалом с искомой жесткостью  $D^{\kappa_{neg}}$ , а вклад этой жесткости в жесткость флокированной ткани определяется искомым из анализа экспериментов коэффициентом  $V_{\kappa_{neg}}$ .

Рассмотрим теперь обратную задачу определения жесткостных характеристик клеевого слоя  $D^{\kappa neg}$  и его удельного объема  $V_{\kappa neg}$ . Для этого используются эксперименты о провисании под действием собственного веса образцов разной длины, вырезанных под разными углами к основе. В данных экспериментах, как и ранее, измеряются максимальные прогибы образцов. Для расчётов необходимо определить толщину ткани  $h_{mкани}$  и толщину сырого клея  $h_{\kappa neg}^{cupozo}$ , поверхностные плотности ткани  $UdVes_{mkanu}$ , клея  $UdVes_{\kappa neg}$  и ткани, покрытой клеем  $UdVes_{mkanu+\kappa neŭ}$ . Тогда толщина клея после высыхания на твердой основе будет

$$h_{\kappa_{RPR}}^{cyxozo} = h_{\kappa_{RPR}}^{cupozo} \cdot k_1, \tag{5.70}$$

где  $k_1$  – коэффициент, который показывает, какую долю от первоначальной толщины сырого клея составляет толщина высушенного клея. В нашем случае из результатов эксперимента видим, что  $k_1 = 0.5$ .

Толщина клея, частично пропитавшегося в ткань, зависит от ткани и клея, которые используются в эксперименте. Обозначим эту толщину через  $h_1$ . В нашем случае  $h_1 = 0.05 \, \text{мм}$ . Следовательно, толщина слоя клея над тканью будет

$$h_{\mathrm{kirs}} = h_{\mathrm{kirs}}^{\mathrm{cynoro}} - h_{\mathrm{l}} = h_{\mathrm{kirs}}^{\mathrm{curdofo}} \cdot k_{\mathrm{l}} - h_{\mathrm{l}} = h_{\mathrm{kirs}}^{\mathrm{curdofo}} \cdot 0.5 - 0.05$$

Таким образом, высота образца в (рис. 5.32) будет

$$b = h_{\text{mkahu}} + h_{\text{knes}} \tag{5.71}$$

Далее находим поверхностную плотность ткани, пропитанной клеем:

$$UdVes_{m\kappa a \mu b + \kappa \pi e \tilde{\mu}} = UdVes_{m\kappa a \mu \mu} + UdVes_{\kappa \pi e g}.$$
 (5.72)

Если для конкретного вида ткани известны экспериментальные данные, толщина ткани  $h_{mкани}$ , толщина сырого клея  $h_{\kappa nen}^{cыporo}$ , поверхностный вес ткани  $UdVes_{mкани}$ , клея  $UdVes_{\kappa nen}$  и ткани, покрытой клеем  $UdVes_{mkahb+\kappa neit}$ , коэффициент  $k_1$ , то можно пересчитать толщину и поверхностную плотность ткани с клеем при других значениях толщины наносимого сырого клея.

Приведём пример такого расчёта. В нашем случае толщина сырого клея —  $0.2\,$  мм, толщина после высыхания на твердой основе — $0.2\cdot0.5=0.1\,$  (мм). Толщина ткани без клея равна  $0.15\,$  мм, толщина ткани, покрытой клеем, равна  $0.2\,$  мм. Следовательно, толщина клея над тканью получается равной  $0.2-0.15=0.05\,$  (мм). По экспериментальным данным поверхностная плотность исходной ткани —  $97\,$  г/м $^2$ , ткани, покрытой клеем толщиной  $0.2\,$  мм — $170\,$  г/м $^2$ . Следовательно, у слоя клея, имевшего первоначально толщину  $0.2\,$  мм, после высушивания поверхностная плотность будет  $170-97=73\,$  г/м $^2$ .

Теперь можно пересчитать толщину и поверхностную плотность ткани с клеем при других значениях толщины наносимого сырого клея. Так, если толщина сырого клея составит 0.3 мм, то толщина клея, высушенного на твердой поверхности, равна  $0.3 \cdot 0.5 = 0.15$  (мм). Следовательно, толщина клея над тканью получается равной 0.15 - 0.05 = 0.1 (мм), поверхностная плотность ткани с клеем составит  $36.5 \cdot 3 + 97 = 206.5$  (г/м²).

При этих допущениях можно переходить к задаче определения  $D^{\kappa nen}$ . Для этого решается задача об изгибе пластины под действием распределенной нагрузки (рис. 5.28). Исходными данными для компьютерной программы являются геометрические размеры: длина образца ax, толщина клея  $h_{\kappa nen}$ , толщина ткани  $h_{m \kappa a n u}$ , поверхностная плотность ткани, максимальные прогибы образцов, вырезанных под разными углами к основе и разной длины.



Рис. 5.28. Схема ткани с клеем

Методом идентификации необходимо получить жесткостную характеристику клея  $D^{\kappa_{neg}}$  и долю клея  $V_{\kappa_{neg}}$ , которым пропитана ткань. Для этого необходимо минимизировать погрешность следующего вида:

$$\begin{split} & \delta^{2} = \\ & = \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{0^{o},ax=30} - \left( u_{y}^{u} \right)_{m\kappa anu}^{0^{o},ax=30} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{0^{o},ax=50} - \left( u_{y}^{u} \right)_{m\kappa anu}^{0^{o},ax=50} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{0^{o},ax=50} - \left( u_{y}^{u} \right)_{m\kappa anu}^{0^{o},ax=50} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=50} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{0^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{0^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=50} - \left( u_{y}^{u} \right)_{m\kappa anu}^{45^{o},ax=50} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{45^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=50} - \left( u_{y}^{u} \right)_{m\kappa anu}^{45^{o},ax=50} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{45^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=50} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=50} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{45^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{45^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=30} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=50} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=50} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}} + \frac{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=70} - \left( u_{y}^{u} \right)_{m\kappa anu}^{90^{o},ax=70} \right)^{2}}{\left( \left( u_{y}^{3} \right)_{m\kappa anu}^{90^{o},ax=$$

Минимизация проводится аналогично первому этапу с той лишь разницей, что здесь уже две неизвестные, и этот процесс требует больших компьютерных ресурсов. Схематично данный процесс представлен на *puc.* 5.29.




Рис. 5.29. Схема процесса определения жесткостной характеристики клея  $D^{^{\kappa_{nes}}}$  и доли клея  $V_{_{\kappa_{nes}}}$ . Темные маркеры условно дают минимум для погрешности  $\delta^2$ 

Третий этап. Определение жесткостных характеристик флокированной ткани

На третьем этапе рассматривается флокированная ткань, которая представляет собой ткань, пропитанную клеем, на поверхности которой имеется дополнительный слой клея с ворсом. Этот этап аналогичен второму. Однако здесь уже считаются известными характеристики клея, впитавшегося в ткань, а именно — жесткость клея  $D^{\kappa_{nen}}$  и коэффициент  $V_{\kappa_{nen}}$ , определяющий эффективную долю пропитавшегося в ткань и высушенного клеевого слоя. Жесткость ткани, пропитанной клеем, определяется по формуле (5.61). Необходимо теперь определить жесткостную характеристику  $D^{\phi_{no\kappa+\kappa_{nen}}}$  слоя, представляющего собой флокированный высушенный клей, находящийся над тканью (слой высоты  $h_{\kappa_{nen}}$  см. на puc. 5.21).

# **5.2.4.** Обработка натурных экспериментов и анализ разработанной модели

Проведены численные эксперименты по сходимости решения при варьировании числа шагов по нагрузке StepF (puc. 5.30) и по числу разбиений на конечные элементы по оси  $O_x$ : nx (puc. 5.31).

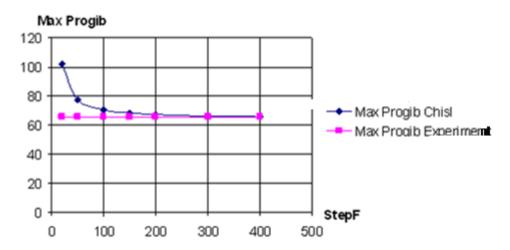



Рис. 5.30. Изменение максимального прогиба в зависимости от числа шагов по нагрузке

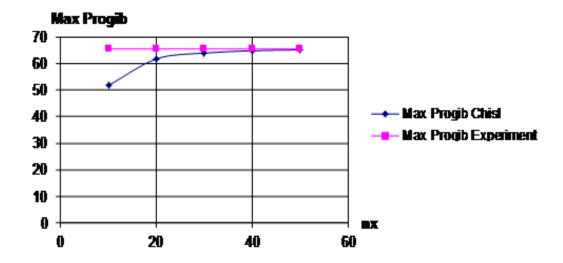



Рис. 5.31. Изменение максимального прогиба в зависимости от числа конечных элементов по оси  $O_{\scriptscriptstyle \chi}$ 

Из рисунков видно, что задача хорошо сходится при числе шагов по нагрузке StepF = 200 и число элементов по горизонтали nx = 40. Эти значения конечных элементов использованы в дальнейших расчётах.

По результатам экспериментов о провисании образцов исходной ткани, ткани с клеем и флокированной ткани, приведенных в *табл. 5.7*, проведены

расчеты с целью определить жесткостные характеристики ткани, клея и клея с ворсом (maбn. 5.8) для образцов, вырезанных под различными углами к основе и разной длины.

Таблица 5.8. Жесткостные характеристики ткани и клея

| Vарактаристика                                             | Величины для образцов, вырезанных под уг- |       |       |       |  |
|------------------------------------------------------------|-------------------------------------------|-------|-------|-------|--|
| Характеристика,                                            | лом к направлению основы                  |       |       |       |  |
| размерность                                                | 0 °                                       | 30 °  | 45 °  | 90 °  |  |
| $D_{110}^{\mathit{mканu}},$ МПа                            | 24,20                                     | 16,52 | 12,10 | 14,30 |  |
| $D^{\kappa_{\mathit{ПеЯ}}}$ , М $\Pi$ а                    | 7,2045                                    |       |       |       |  |
| $V^{\kappa_{\mathcal{N}}$ ея                               | 0,476                                     |       |       |       |  |
| $D_{110}^{\mathit{mкань}+\kappa\mathit{ne}\check{u}},$ МПа | 27,63                                     | 19,95 | 15,53 | 17,73 |  |
| $D^{\phi$ лок $+$ клей $$ , М $\Pi$ а                      | 0,081                                     |       |       |       |  |

Данные значения получены методом идентификации при StepF=200 и nx=40. На первом этапе использовали экспериментальные данные о провисании образца исходной (не флокированной) ткани, в результате чего получили жесткостную характеристику ткани  $D_{110}^{m\kappa anu}$ . На втором этапе рассматривали ткань с нанесенным на нее клеем. Здесь определяли жесткостные характеристики клеевого слоя  $D^{\kappa neg}$  и  $V^{\kappa neg}$ , где  $V^{\kappa neg}$  — коэффициент, определяющий эффективную долю клеевого слоя, пропитавшегося в ткань.

Для данной модели исследовано влияние физической нелинейности (5.59). На *puc.* 5.32 показана зависимость максимального прогиба образца *MaxProgib* от длины образца ax: в столбце A – для физически нелинейной модели, а в столбце B – для физически линейной. Круглыми маркерами отмечены экспериментальные данные. Из таблицы видно, что введение нелинейных слагаемых в физические соотношения приводит к весьма незначительному изменению результатов. Это означает, что в образце возникают большие перемещения, но деформации остаются малыми.

Круглыми маркерами отмечены экспериментальные значения максимальных прогибов образцов длиной 30, 50 и 70 мм, а линией с треугольными маркерами — численные. Как видно из рисунка, созданная модель складкообразования флокированной ткани хорошо коррелирует с экспериментальными данными.

На третьем этапе рассматривалась флокированная ткань (использовались экспериментальные данные maбn. 5.7). Данный материал состоит из ткани, пропитанной клеем и слоя, представляющего собой высушенный клей, находящийся над тканью. Характеристики ткани, пропитанной клеем ( $V_{\kappa neg}$  и  $D_{\kappa neg}$ ), были определены на втором этапе метода идентификации (maбn. 5.8). Определяли жесткостную характеристику флокированного слоя  $D^{\phi no\kappa + \kappa neŭ}$ . В нашем случае толщина ткани  $h_{m\kappa anu} = 0.15$  мм, толщина слоя высушенного

клея  $h_{\kappa neg}=0.5$  мм и поверхностная плотность всего материала  $UdVes_{m\kappa ahb+\kappa ne \ddot{u}+\phi no \kappa}=256$  г/м². В результате решения задачи идентификации данная характеристика получилась равной  $D^{\phi no \kappa+\kappa ne \ddot{u}}=0.081$  МПа.

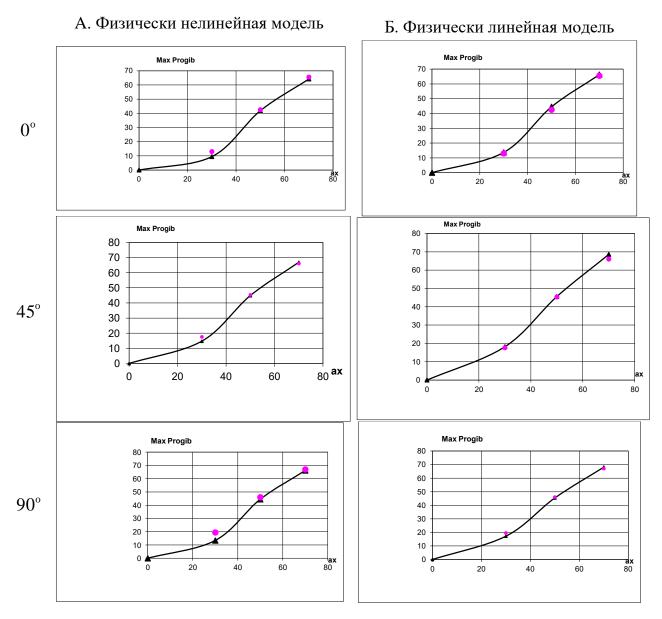



Рис. 5.32. Численные и экспериментальные значения прогибов образцов ткани с клеем с учетом и без учета физической нелинейности

По разработанной модели исследована зависимость максимального прогиба образца *MaxProgib* от длины образца флокированной ткани (*puc. 5.33*). Круглыми маркерами отмечены экспериментальные значения максимальных прогибов образцов длиной 30, 50, 70 мм, а линией с треугольными маркерами — численые. Видно, что созданная модель складкообразования флокированной ткани, как и модель ткани, покрытой только клеем, хорошо коррелируют с экспериментальными данными, что позволяет производить предварительные расчеты и оце-

нивать влияние различных механических, геометрических и технологических характеристик флокированной ткани на ее способность к складкообразованию.

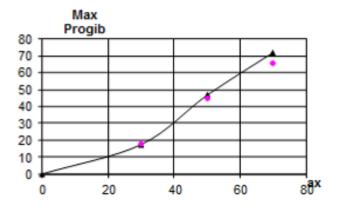



Рис. 5.33. Численные и экспериментальные значения прогибов образцов флокированной ткани, вырезанных в направлении основы

### 5.2.5. Зависимость кривизны над опорой от толщины клеевого слоя

Рассмотрим модель, в которой значения жесткостных характеристик приведены в maбn. 5.8. Исследуем сначала ткань, на которую нанесён сырой клей толщины  $h_{\kappa nen}^{cuporo} = H_{\kappa nen}$ , получим зависимость кривизны над опорой от толщины сырого клея. Из графиков (puc. 5.34) видно, что при увеличении толщины клея до 0,2 мм кривизна над опорой немного растет, а при дальнейшем увеличении толщины клеевого слоя уменьшается.

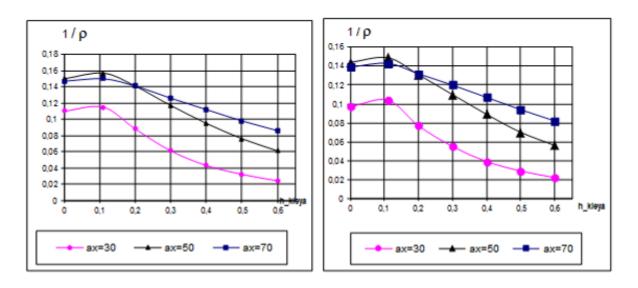



Рис. 5.34. Зависимость кривизны над опорой от толщины сырого клея  $h_{\kappa nen}^{cырого}$  для образцов, вырезанных под углом 45° (слева) и 90° (справа) к основе

Далее рассмотрим флокированную ткань. В качестве варьируемого параметра в отличие от предыдущего случая примем толщину флокированного высушенного клея  $h_{\text{-Flock}}$ , который находится над поверхностью ткани. Здесь также получим зависимость кривизны над опорой от толщины высушенного клея. Результаты приведены на puc. 5.35.

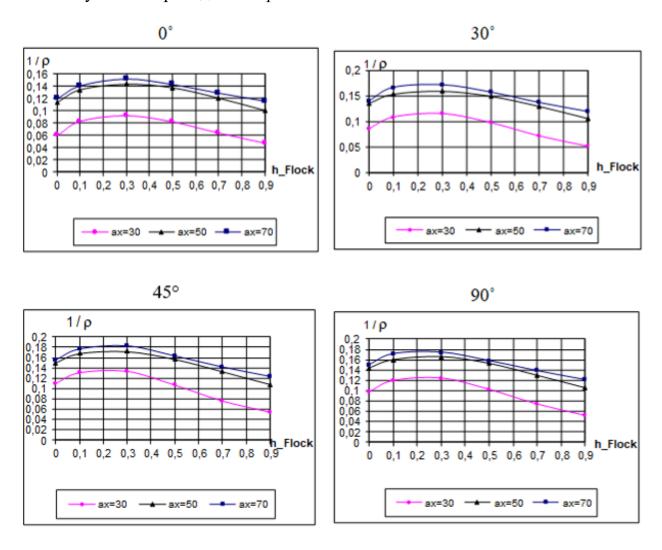



Рис. 5.35. Зависимость кривизны над опорой от толщины высушенного клея

Здесь так же видно, что сначала при увеличении толщины клея  $h_{Flock}$  кривизна над опорой немного растет, а при дальнейшем её увеличении — уменьшается.

### **5.2.6.** Влияние жесткости ткани на способность к складкообразованию

Рассмотрим гипотетическую ткань, у которой можно модифицировать жесткость без изменения других характеристик, например, путем обработки

ткани холодной плазмой. В общем случае, как правило, жесткость ткани и ее плотность коррелируют между собой, поэтому влияние жесткости ткани на способность к складкообразованию будет, скорее всего, нелинейной. В частности, при увеличении толщины нити будут возрастать не только жесткость ткани, но и ее удельный вес. Тогда зависимость кривизны над опорой от характеристик ткани будет, несомненно, сложнее и менее предсказуема.

По результатам эксперимента можно построить зависимость жесткостных характеристик флокированной ткани от угла, под которым вырезается образец. Если имеется таблица значений жесткостных характеристик  $y_1 - y_n$  как функции угла  $\alpha$  (maбn. 5.9), то можно записать интерполяционный многочлен Лагранжа, график которого будет проходить через n заданных точек. Формула многочлена имеет вид

$$f(\alpha) = y_{1} \cdot \frac{(\alpha - \alpha_{2})(\alpha - \alpha_{3})L (\alpha - \alpha_{n})}{(\alpha_{1} - \alpha_{2})(\alpha_{1} - \alpha_{3})L (\alpha_{1} - \alpha_{n})} +$$

$$+ y_{2} \cdot \frac{(\alpha - \alpha_{1})(\alpha - \alpha_{3})L (\alpha - \alpha_{n})}{(\alpha_{2} - \alpha_{1})(\alpha_{2} - \alpha_{3})L (\alpha_{2} - \alpha_{n})} + L$$

$$L + y_{n} \cdot \frac{(\alpha - \alpha_{2})(\alpha - \alpha_{3})L (\alpha - \alpha_{n-1})}{(\alpha_{n} - \alpha_{1})(\alpha_{n} - \alpha_{2})L (\alpha_{n} - \alpha_{n-1})}$$

$$(5.74)$$

Таблица 5.9 **Таблица значений функции** *f* 

| $\alpha$              | $lpha_{_{ m l}}$ | $lpha_{\scriptscriptstyle 2}$ | $\alpha_{_3}$ | L | $\alpha_{n}$    |
|-----------------------|------------------|-------------------------------|---------------|---|-----------------|
| $f = D_{110}(\alpha)$ | $\mathcal{Y}_1$  | $\mathcal{Y}_2$               | $y_3$         | L | $\mathcal{Y}_n$ |

В нашем конкретном случае многочлен составляется для *табл.* 5.10, где представлены жесткостные характеристики образцов ткани, вырезанных под различными углами к основе, полученные методом идентификации (см. *табл.* 5.7). Данный многочлен имеет вид

$$D_{110}^{\textit{mкани}}(\alpha) = 24,20 \cdot \frac{(\alpha - 30)(\alpha - 45)(\alpha - 90)}{(0 - 30)(0 - 45)(0 - 90)} + 16,52 \cdot \frac{(\alpha - 0)(\alpha - 45)(\alpha - 90)}{(30 - 0)(30 - 45)(30 - 90)} + 12,10 \cdot \frac{(\alpha - 0)(\alpha - 30)(\alpha - 90)}{(45 - 0)(45 - 30)(45 - 90)} + 14,30 \cdot \frac{(\alpha - 0)(\alpha - 30)(\alpha - 45)}{(90 - 0)(90 - 30)(90 - 45)}$$

Таблица 5.10. Жесткостные характеристики ткани

| Жесткостные характеристики ткани $D_{110}^{mкани}(\alpha)$ , МПа для образцов, |     |     |     |
|--------------------------------------------------------------------------------|-----|-----|-----|
| вырезанных под углами к основе                                                 |     |     |     |
| 0°                                                                             | 30° | 45° | 90° |

| 1 4 4 4 4 |
|-----------|
| 1 1/1/20  |
| 14 10     |
|           |

После упрощений получаем многочлен вида

$$D_{110}^{m\kappa a\mu u}(\alpha) = 0,0000732\alpha^3 - 0,006351\alpha^2 - 0,131\alpha + 24,20$$
.

Такого рода аппроксимации можно проводить различными способами, например, методом наименьших квадратов, интерполяционной формулой Ньютона. Также можно использовать встроенные функции в пакете *Excel* (*puc.* 5.36).

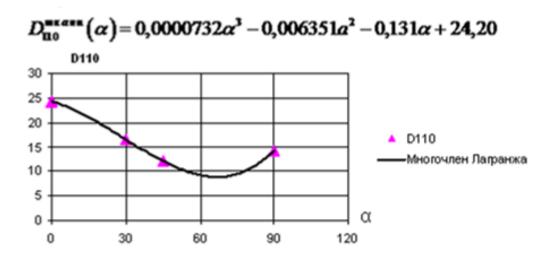



Рис. 5.36. Зависимость жесткостных характеристик флокированной ткани от угла, под которым вырезан образец

Подчеркнем, что зависимость жесткостных характеристик от угла, под которым вырезан образец, получена для нефлокированной ткани. Знание такой зависимости для флокированной ткани и для ткани со слоем клея высоты  $h_{\kappa neg}$  в данной математической модели не требуется, так как в ней используется двухслойная модель флокированной ткани и ткани с клеем. Знание  $D_{110}^{m\kappa ahu}(\alpha)$  необходимо для подстановки ее в соотношение для жесткости по формуле (5.60):

$$D_{110}^{\textit{mkahb}+\textit{kneŭ}} = \left(D_{110}^{\textit{mkahu}} + V_{\textit{kneg}} \cdot D^{\textit{kneg}}\right). \tag{5.75}$$

При необходимости зависимость жесткостных характеристик от угла, под которым вырезан образец флокированной ткани, легко построить после численного анализе процесса провисания флокированной ткани.

Таким образом, идентификация жесткостных характеристик по результатм натурных экспериментов показала, что при изгибе флокированной ткани можно ограничиться физически линейной моделью, поскольку в физических соотношениях  $D_{110}$  много больше слагаемого  $D_{114} \, \varepsilon_{11}^2$ ,  $D_{220}$  много больше слагаемого летов от разических соотношениях  $D_{110}$  много больше слагаемого  $D_{114} \, \varepsilon_{11}^2$ ,  $D_{220}$  много больше слагаемого  $D_{114} \, \varepsilon_{11}^2$ ,  $D_{220} \, \varepsilon_{11}^2$ 

гаемого  $D_{224} \, \varepsilon_{22}^2$ , и т. д. Это объясняется тем, что при изгибе (провисании) образцов перемещения большие, а деформации малы.

С одной стороны, если увеличивается вес ткани, то увеличивается ее кривизна. С другой стороны, известно, что цилиндрическая жесткость  $D^{\mu\nu nundp}$  пластины увеличивается пропорционально кубу её толщины:  $D^{\mu\nu nundp}$ :  $D_{110}^{\mu}h^3$ , что ведет к уменьшению кривизны ткани. Поэтому обе характеристики (вес и толщина клея) конкурируют между собой. Их совместное влияние оказывается нелинейным, что видно из результатов численных экспериментов. В частности, из puc.~5.33 видно, что добавление небольшого количества клея увеличивает кривизну, а дальнейшее увеличение толщины клея приводит к уменьшению кривизны из-за резкого увеличения жесткости композита, то есть к уменьшению способности к складкообразованию.

Таким образом, небольшое добавление клея позволяет сохранять такую же драпируемость, какую имела ткань без клея. Отметим, что из *puc.* 5.35 видно, что увеличение толщины сырого клея до 0,3 мм не ухудшает способность к складкообразованию по сравнению с исходной тканью.

### 5.3. Моделирование структуры теплоизоляционного пакета из слоев материала с локально нанесенным ворсом

В данном разделе произведено моделирование структуры гибкого теплоизоляционного материала, изготовленного из нескольких слоёв флокированных полотен различного состава. Идея этой разработки заключается в том, что при локальном нанесении ворса масса ворсового слоя может быть небольшой, но в то же время, это создаст воздушные прослойки между слоями, наложенными друг на друга, а значит, существенно повысит теплозащитные свойства пакета. Для оптимизации структуры важно понять, какой вклад в теплопроводность вносят различные её элементы.

Теплоизоляционный флокированный материал (*puc.* 5.37) состоит из нескольких слоев. Каждый слой состоит из мембраны (полимерной пленки или другого тонкого материала) с флокированными элементами из клея и вертикально ориентированных волокон.

Коэффициент теплопроводности является главным критерием теплоизолирующего материала. Он зависит от структуры и физических свойств отдельных элементов, представленных в *табл. 5.11*.

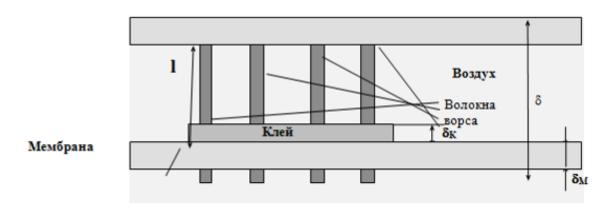



Рис. 5.37. Структура теплоизоляционного флокированного материала

Таблица 5.11. Параметры компонентов структуры

| Компонент     | Параметры                    |                                               |  |
|---------------|------------------------------|-----------------------------------------------|--|
| Воздух        | Коэффициент теплопроводности | $\lambda_{BO3}$ , BT/(M·K)                    |  |
| Мембрана      | Толщина                      | $\sigma_{\mathrm{M}},\mathrm{M}$              |  |
|               | Коэффициент теплопроводности | $\lambda_{\mathrm{M}},\mathrm{Bt/(M\cdot K)}$ |  |
|               | Площадь                      | $A, M^2$                                      |  |
|               | Коэффициент излучения        | $\epsilon_{W}$                                |  |
|               | Толщина                      | $\sigma_K$ , M                                |  |
| Клей          | Площадь                      | $A_K$ , $M^2$                                 |  |
|               | Коэффициент теплопроводности | $\lambda_{K}$ , $B_{T}/(M \cdot K)$           |  |
|               | Длина                        | 1, м                                          |  |
| Волокна ворса | Площадь                      | $A_B, M^2$                                    |  |
|               | Коэффициент теплопроводности | $\lambda_{\rm B},{ m BT/}({ m M}\cdot{ m K})$ |  |

Коэффициент излучения  $\epsilon$  — это отношение интенсивности излучения данного тела к интенсивности излучения абсолютно черного тела при той же температуре  $0 \le \epsilon \le 1$ .

### 5.3.1. Коэффициент теплопроводности воздуха в структуре

Коэффициент теплопроводности воздуха  $\lambda_{\rm B}$  в нашей структуре рассчитаем согласно puc.~5.38, где слой воздуха находится между двумя мембранами. Перенос тепла через воздух осуществляется тремя тепловыми потоками: теплопередачей  $q_{\rm B}$ , конвекцией  $q_{\rm K}$  и излучением  $q_{\rm S}$ .

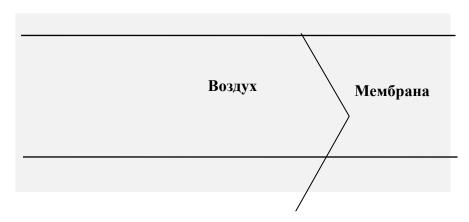



Рис. 5.38. Воздушный элемент структуры

Тепловой поток:

$$q_{Bo3} = q_0 + q_K + q_H {.} {(5.76)}$$

Тогда 
$$\lambda_{Bo3} = \frac{q_B \delta}{\Delta T} = \frac{q_0 \delta}{\Delta T} + \frac{q_K \delta}{\Delta T} + \frac{q_H \delta}{\Delta T} = \lambda_0 + \lambda_K + \lambda_H$$
, (5.77)

т. е. коэффициент теплопроводности воздуха есть сумма коэффициентов теплопроводности теплопередачи, теплопроводности конвекции и теплопроводности излучения.

Воздух является основной составной частью нашей структуры, поэтому коэффициент теплопроводности воздуха ( $\lambda_0$ ) определяет коэффициент теплопроводности структуры.  $\lambda_0$  зависит от температуры (T) [165] и давления воздуха (p).

$$\lambda_0 = 24.6 \cdot 10^{-3} \left(\frac{T[K]}{273.15}\right)^{0.759}$$
 для  $p = 10^5$  Па.  $\lambda_0 = 0.026$  Вт/(м·К) для  $p = 10^5$ 

Па и  $T = 20^{\circ}$  С. Эта зависимость вычислена согласно [166] и представлена на *рис.* 5.39.

Вычисление доли коэффициента теплопроводности воздуха конвекцией  $\lambda_K$  выполнено согласно [167]:

$$\frac{\lambda_K}{\lambda_0} = \frac{M_1 (Gr \operatorname{Pr})^{M_3}}{(Gr \operatorname{Pr}) + M_2},$$
(5.78)

где  $M_1$ ,  $M_2$  и  $M_3$  – константы;

Gr и Pr – безразмерные параметры;

Gr – число Грасхофа:

$$Gr = \frac{g\delta^{3}\beta(T_{1} - T_{2})}{v^{2}};$$
 (5.79)

*Pr* – число Прандтля:

$$\Pr = \frac{v}{a}; \tag{5.80}$$

 $T_1$  и  $T_2$  – температуры плоскостей 1 и 2, K;  $g = 9.8 \text{ м/c}^2$  – ускорение свободного падения;  $\beta$ ,  $\nu$  и a – материальные параметры.

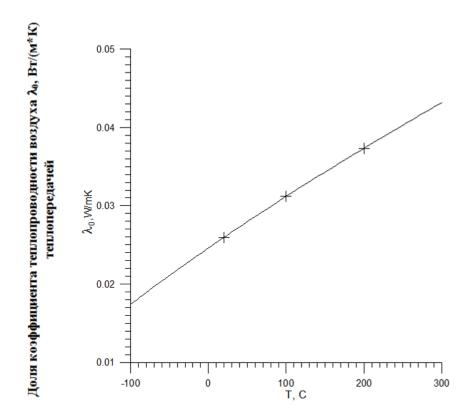



Рис. 5.39. Доля коэффициента теплопроводности воздуха  $\lambda_0$  теплопередачей в зависимости от температуры для  $p=10^5~\Pi a$ 

Для идеального газа  $\beta=1/T$  (K<sup>-1</sup>). Для сухого воздуха (p=1 бар и T=20 °C) согласно [168]:

 $\beta = 3.419 \cdot 10^{-3} \text{ K}^{-1};$ 

 $v = 15.13 \cdot 10^{-6} \text{ m}^2/\text{c}$  – кинематическая вязкость;

 $a = 21.8 \cdot 10^{-6} \text{ м}^2/\text{c}$  — температуропроводность.

Константы  $M_1$ ,  $M_2$  и  $M_3$  зависят от положения слоя воздуха по отношению к тепловому потоку (maбn.~5.12) [97]. Зависимости  $\lambda_K$  от расстояния между пленками для различных  $\Delta T$  и положения пленок представлены на puc.~5.40 и 5.41.

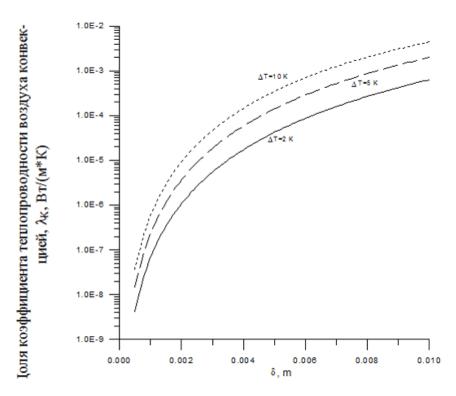



Рис. 5.40. Расчетная зависимость  $\lambda_K$  от расстояния между мембранами, расположенными горизонтально (средняя температура T=20 °C; давление  $p=10^5$  Па)

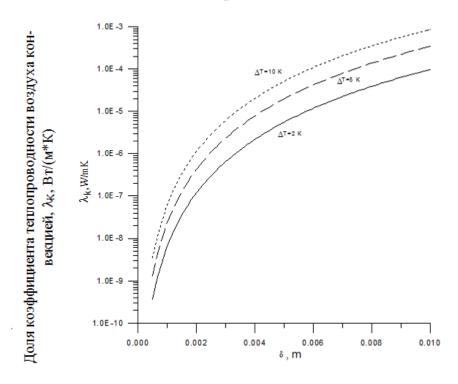



Рис. 5.41. Расчетная зависимость от расстояния между мембранами, расположенными вертикально (средняя температура  $T=20^{\circ}C;$  давление  $p=10^{5}\ \Pi a)$ 

Таблица 5.12. Безразмерные константы  $M_1$ ,  $M_2$  и  $M_3$  для вычисления  $\lambda_K$ 

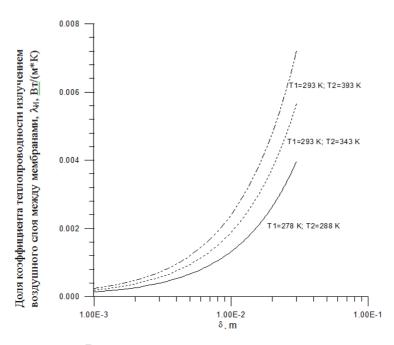
| Расположение и направление | $\mathbf{M}_1$ | $M_2$                | $M_3$ |
|----------------------------|----------------|----------------------|-------|
| теплового потока           |                |                      |       |
|                            | 0.070          | $0.32 \cdot 10^4$    | 1.333 |
| мембраны горизонтальные    |                |                      |       |
| -                          | 0.0236         | 1.01·10 <sup>4</sup> | 1.393 |
| мембраны вертикальные      |                |                      |       |

Нижеприведенное уравнение описывает перенос тепла излучением между двумя параллельными плоскостями [169].

Тепловой поток 
$$q_{H} = \frac{\sigma(T_{1}^{4} - T_{2}^{4})}{\frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} - 1 \right)}$$
 Вт, (5.81)

где  $\sigma = 5.67 \cdot 10^{-8} \; \mathrm{Bt/(m^2 K^4)} -$ постоянная Стефана-Больцмана;

 $T_1$  – температура плоскости 1;


 $T_2$  – температура плоскости 2;

 $\epsilon_1$  и  $\epsilon_2$  –коэффициенты излучения.

Коэффициент теплопроводности излучением

$$\lambda_{H} = \frac{q_{H} \delta}{\Delta T} = \frac{\sigma(T_{1}^{4} - T_{2}^{4})}{\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} - 1} \frac{\delta}{\Delta T}$$
 (5.82)

зависит от расстояния между мембранами, температуры и излучательной способности. Эти зависимости представлены на *puc.* 5.42–5.44.



Расстояние между слоями, м

Рис. 5.42. Доля коэффициента теплопроводности излучением для различных температур  $T_1$  и  $T_2$  при коэффициенте излучения  $\epsilon=0.05$ 

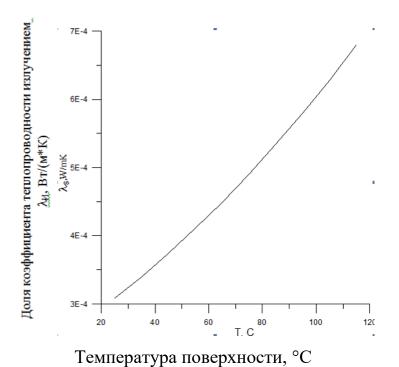



Рис. 5.43. Доля коэффициента теплопроводности излучением при коэффициенте излучения  $\varepsilon = 0.05$ , расстоянии между мембранами 2 мм, разнице температур 10 °C

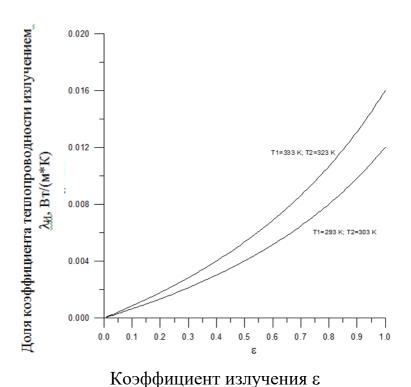



Рис. 5.44. Доля коэффициента теплопроводности воздушного слоя между мембранами механизмом излучения при расстоянии между мембранами 2 мм и разнице температур 10 °C

Возможны различные пути переноса тепла излучением. Примем для простоты, что коэффициенты излучения клея и ворса одинаковы,  $\varepsilon_{\rm K} \cong \varepsilon_{\rm B}$ . Тогда достаточно описать три пути (puc.~5.45): 1) мембрана—мембрана, 2) флокфлок, 3) мембрана—флок.

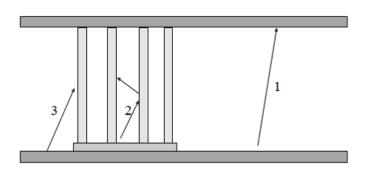



Рис. 5.45. Три возможных направления излучения

Доля тепла, переносимая каждым из путей, зависит от геометрии ворсовых элементов:  $l_{\rm e}$  — длины ворса, N — числа волокон на 1 м $^2$ , D — диаметра волокна.

Например, в области 1 (рис. 5.46) доминирует путь 1, в области 2 доминирует путь 2, в области 3 доминирует путь 3.

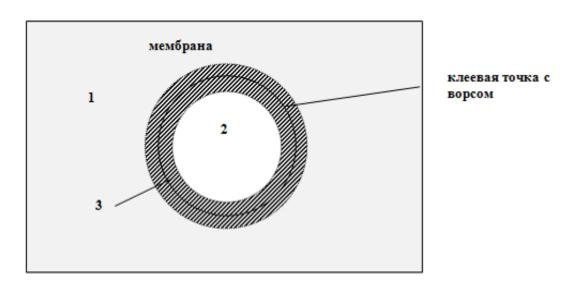



Рис. 5.46. Влияние рисунка на механизм теплопереноса излучением

Рассчитаем тепловые потоки и коэффициенты теплопроводности для каждой из областей.

Область 1

$$q_{H1} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{2}{\varepsilon_M} - 1}$$
 (5.83)

$$\lambda_{H1} = \frac{q_{H1} \delta}{\Delta T} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{2}{\epsilon_M} - 1} \frac{\delta}{\Delta T}$$
 (5.84)

Область 2

Мы можем описать положение волокон в виде концентрических колец (рис. 5.47) с радиусом  $r \approx k \frac{1}{\sqrt{N}}$ , где k – номер кольца.

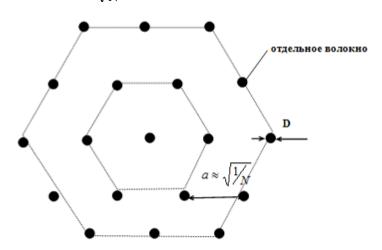



Рис. 5.47. Модель расположения волокон для вычисления средней длины пути для излучения

Найдем среднюю длину пути для излучения  $l_{\it H}$ . Расстояние между волокнами равно примерно  $\frac{1}{\sqrt{N}}$  .

Расстояние между двумя волокнами согласно puc.~5.47 есть  $a = \sqrt{\frac{2}{\sqrt{3}} \cdot \frac{1}{N}} \cong 1.07 \cdot \sqrt{\frac{1}{N}} \approx \sqrt{\frac{1}{N}}$ , где N- плотность флокирования, м $^{-2}$ . В каждом кольце отражается  $\frac{D}{\sqrt{\frac{1}{N}}} = D\sqrt{N}$  -я часть всего излучения.

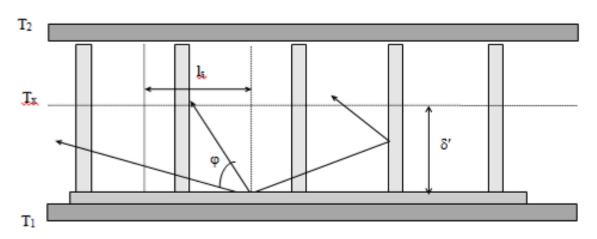



Рис. 5.48. Средняя длина пути для излучения между волокнами

Можно принять, что средняя длина пути для  $l_{\rm II}$  примерно равна расстоянию (вдоль мембраны), на котором отражается или поглощается половина излучения:

$$l_{\scriptscriptstyle H} pprox K_{_{1\!/_{\!2}}}\sqrt{\frac{1}{N}}$$
 , где  $K_{_{1\!/_{\!2}}}\cdot D\sqrt{N}=\frac{1}{2}$   $\Rightarrow$   $K_{_{1\!/_{\!2}}}=\frac{1}{2D\sqrt{N}}$  ,  $l_{\scriptscriptstyle H} pprox \frac{1}{2DN}$ 

Например, для  $D=2.5\cdot10^{-5}$  м,  $N=10^8$  м $^{-2}$ ,  $l_{\it U}\approx0.2$  мм; для  $D=1.5\cdot10^{-5}$  м,  $N=3\cdot10^7$  м $^{-2}$ ,  $l_{\it U}\approx1.1$  мм.

Излучение идет под различными углами. Примем, что в среднем излучение идет под углом  $\varphi = 45^\circ$  (рис. 5.48). Согласно теории теплопереноса [170], [171], коэффициент теплопроводности по излучению  $\lambda_{II}$  зависит от средней высоты пути излучения. Тогда: средняя высота пути ( $\delta'$ ) для излучения в области 2:  $\delta' = l_{II}$  (если  $l_{II} < \delta$  – расстояния между мембранами).

Коэффициент теплопроводности для области 2 приблизительно равен

$$\lambda_{H2} = \frac{\sigma(T_1^4 - T_x^4)}{\binom{2}{\varepsilon_B} - 1} \frac{\delta'}{(T_1 - T_x)},$$
(5.85)

где  $T_x$  – температура на уровне  $\delta'$ .

Если  $T_1, T_2 >> T_1 - T_2$ , тогда

$$\frac{T_1^4 - T_x^4}{T_1 - T_x} = \frac{(T_1^2 - T_x^2)(T_1^2 + T_x^2)}{T_1 - T_x} = (T_1 + T_x)(T_1^2 + T_x^2) \approx 
\approx (T_1 + T_2)(T_1^2 + T_2^2) = \frac{T_1^4 - T_2^4}{T_1 - T_2}.$$
(5.86)

Отсюда

$$\lambda_{H2} \approx \frac{\sigma(T_1^4 - T_2^4)}{\frac{2}{\varepsilon_R} - 1} \frac{\delta'}{T_1 - T_2}.$$
(5.87)

Область 3

Можно написать:

$$\lambda_{H3} \approx \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\ell_{E_M}} + \frac{1}{\ell_{E_R}} - 1} \frac{\delta}{\Delta T}.$$
 (5.88)

Если  $\delta' > \delta$  (*puc.* 5.49), область 1 находится над мембраной без клея, область 3 находится над клеем, а область 2 отсутствует. При этом большая часть излучения проходит через объем между мембранами.

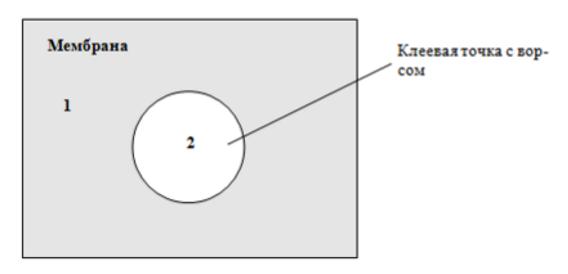



Рис. 5.49. Доминирующие механизмы переноса тепла при  $\delta' > \delta$ 

Однако если  $\delta' < \delta$ , область 3 находится над границей между областями с ворсом и без ворса. Ширина этой области составляет приблизительно  $l_U = \delta'$ . Если  $\delta'$  мало по сравнению с параметрами рисунка, например диаметром флокированной точки, можно не рассматривать область 3.

В области над мембраной без клея:

$$\lambda_{H1} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{2}{\varepsilon_M} - 1} \frac{\delta}{\Delta T}, \tag{5.89}$$

$$\lambda_{\text{Bo31}} = \lambda_0 + \lambda_K + \lambda_{\text{M1}} = \lambda_{\text{Bo3}}. \tag{5.90}$$

В области над клеем  $\lambda_{H2} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{2}{\varepsilon_B} - 1} \frac{\delta'}{\Delta T}$  нет конвекции;

$$\lambda_{\text{Bo32}} = \lambda_0 + \lambda_{\text{W2}}.\tag{5.91}$$

#### 5.3.2. Коэффициент теплопроводности клея и волокон

Оценим влияние клея и волокон ( $\Delta \lambda_{K_{n}+B}$ ) на теплозащитные свойства единичного слоя структуры. Данная эквивалентная схема характеризует перенос тепла через структуру воздух + клей + ворс (puc. 5.50).

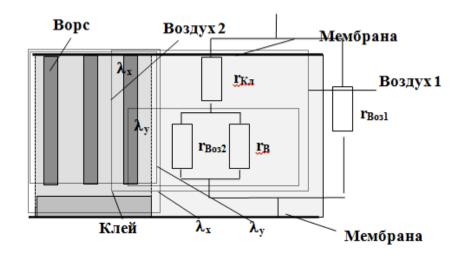



Рис. 5.50. Эквивалентная схема переноса теплоты через структуру воздух + клей + ворс

Коэффициент теплопроводности  $\lambda_y$  характеризует перенос тепла в области между клеем и верхней мембраной. Тепловой поток идет параллельно через волокна и через воздух 2 (воздух 2 – воздух между волокнами). В этом случае тепловой поток:

$$\dot{Q}_{y} = \dot{Q}_{Bo32} + \dot{Q}_{B} = \frac{\lambda_{Bo32} (A_{K_{1}} - A_{B}) \Delta T}{\delta - S_{K_{1}}} + \frac{\lambda_{B} A_{B} \Delta T}{\delta - S_{K_{1}}} = \frac{\lambda_{y} A_{K_{1}} \Delta T}{\delta - S_{K_{1}}};$$

$$\lambda_{y} = \lambda_{Bo32} \left( 1 - \frac{A_{B}}{A_{K_{1}}} \right) + \lambda_{B} \frac{A_{B}}{A_{K_{1}}} = \lambda_{Bo32} + \frac{A_{B}}{A_{K_{1}}} (\lambda_{B} - \lambda_{Bo32}) =$$

$$= \lambda_{Bo32} \left( 1 + \frac{A_{B}}{A_{K_{1}}} \left( \frac{\lambda_{B}}{\lambda_{Bo32}} - 1 \right) \right),$$
(5.92)

где  $\lambda_x$  характеризует перенос теплоты между мембранами на поверхности с клеем. Тепловой поток идет через область «у» и затем через клей.

Тепловое сопротивление области «х»  $r = \frac{S}{\lambda} = \frac{\Delta T}{q}$  является суммой двух тепловых сопротивлений: области «у» и клея.

$$r_{x} = r_{Kleber} + r_{y};$$

$$\frac{\delta}{\lambda_{xr}} = \frac{S_{Kleber}}{\lambda_{Kleber}} + \frac{\delta - S_{Kleber}}{\lambda_{y}} = \frac{(\delta - S_{Kleber})\lambda_{Kleber} + S_{Kleber}\lambda_{y}}{\lambda_{Kleber}\lambda_{y}}.$$
(5.93)

Тогда суммарный коэффициент теплопроводности

$$\lambda_{x} = \frac{\delta \lambda_{Kleber} \lambda_{y}}{(\delta - S_{Kleber}) \lambda_{Kleber} + S_{Kleber} \lambda_{y}}.$$
(5.94)

Так как толщина клея  $S_{\mathit{Kleber}} \approx 0.1 \cdot \delta < \delta; \lambda_{\mathit{v}} \approx \lambda_{\mathit{Luft}} < \lambda_{\mathit{Kleber}}$ , то

$$S_{Kleber} \lambda_{y} \ll (\delta - S_{Kleber}) \lambda_{Kleber}$$
 (5.95)

$$\text{И} \ \, \lambda_{x} \approx \frac{\delta \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y} + S_{\textit{Kleber}} \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}} \lambda_{y}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}}{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Kleber}}} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{Kleber}}}{(\delta - S_{\textit{Kleber}})} = \frac{(\delta - S_{\textit{Kleber}}) \lambda_{\textit{Klebe$$

$$= \lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta - S_{Kleber}} \right) \approx \lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right), \tag{5.96}$$

где  $\lambda_{\Sigma}$  характеризует перенос теплоты во всем объеме между мембранами. Тепловой поток идет параллельно через область «х» и через воздух I.

$$\begin{split} & \overset{\cdot}{Q}_{\varSigma} = \overset{\cdot}{Q}_{Luftl} + \overset{\cdot}{Q}_{x} = \frac{\lambda_{Luft} \left( A - A_{Kleber} \right) \Delta T}{\delta} + \frac{\lambda_{x} A_{Kleber} \Delta T}{\delta} = \frac{\lambda_{\varSigma} A \Delta \Delta}{\delta}; \\ & \lambda_{\varSigma} = \lambda_{Luft} \left( I - \frac{A_{Kleber}}{A} \right) + \lambda_{x} \frac{A_{Kleber}}{A} = \lambda_{Luft} + \frac{A_{Kleber}}{A} \left( \lambda_{x} - \lambda_{Luft} \right) = \lambda_{Luft} \left( I + \frac{A_{Kleber}}{A} \left( \frac{\lambda_{x}}{\lambda_{Luft}} - I \right) \right). \end{split}$$

Увеличение коэффициента теплопроводности между мембранами за счет клея и флока:

$$\Delta\lambda_{\Sigma} = \Delta\lambda_{Kleber+Flock} = \lambda_{\Sigma} - \lambda_{Luft} = \lambda_{Luft} \frac{A_{Kleber}}{A} \left( \frac{\lambda_{x}}{\lambda_{Luft}} - 1 \right) = \lambda_{Luft} \frac{A_{Kleber}}{A} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) = A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) + A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) + A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} - 1 \right) + A_{KLeber} \left( \frac{\lambda_{y} \left( 1 + \frac{S_{Kleber}}{\delta} \right)}{\lambda_{Luft}} -$$

$$= \lambda_{\textit{Luft}} \; \frac{A_{\textit{Kleber}}}{A} \Biggl( \frac{\lambda_{\textit{Luft}\,2}}{\lambda_{\textit{Luft}}} \Biggl( 1 + \frac{A_{\textit{Flock}}}{A_{\textit{Kleber}}} \Biggl( \frac{\lambda_{\textit{Flock}}}{\lambda_{0}} - 1 \Biggr) \Biggr) \Biggl( 1 + \frac{S_{\textit{Kleber}}}{\delta} \Biggr) - 1 \Biggr) = 0$$

$$= \lambda_{Luft} \frac{A_{Kleber}}{A} \left( \frac{\lambda_{Luft2}}{\lambda_{Luft}} + \frac{\lambda_{Luft2}}{\lambda_{Luft}} \frac{A_{Flock}}{A_{Kleber}} \frac{\lambda_{Flock}}{\lambda_{Luft2}} - \frac{\lambda_{Luft2}}{\lambda_{Luft}} \frac{A_{Flock}}{A_{Kleber}} + \frac{\lambda_{Luft2}}{\lambda_{Luft}} \frac{S_{Kleiber}}{\delta} + \frac{\lambda_{Luft2}}{\delta} \frac{S_{Kleiber}}{\delta} + \frac{\lambda_{Luft2}}{\delta} \frac{A_{Flock}}{\delta} + \frac{\lambda_{Luft2}}{\delta} \frac{A_{Flock}}{\delta} \frac{S_{Kleiber}}{\delta} - \frac{\lambda_{Luft2}}{\lambda_{Luft2}} \frac{A_{Flock}}{\delta} \frac{S_{Kleber}}{\delta} - \frac{\lambda_{Luft2}}{\delta} \frac{A_{Flock}}{\delta} \frac{S_{Kleiber}}{\delta} - \frac{\lambda_{Luft2}}{\delta} \frac{A_{Flock}}{\delta} \frac{S_{Kleiber}}{\delta} - \frac{\lambda_{Luft2}}{\delta} \frac{S_{Kle$$

Так как  $\frac{A_{Flock}}{A_{Kleber}} \frac{S_{Kleber}}{\mathcal{S}}$  мало, то

$$\Delta \lambda_{Kleber+Flock} = \lambda_{Luft} \frac{A_{Kleber}}{A} \left( \frac{\lambda_{Luft2}}{\lambda_{Luft}} + \frac{\lambda_{Luft2}}{\lambda_{Luft}} \frac{A_{Flock}}{A_{Kleber}} \frac{\lambda_{Flock}}{\lambda_{Luft2}} - \frac{\lambda_{Luft2}}{\lambda_{Luft}} \frac{A_{Flock}}{A_{Kleber}} + \frac{\lambda_{Luft2}}{\lambda_{Luft}} \frac{S_{Kleber}}{\delta} + \frac{\lambda_{Luft2}}{\delta} + \frac{\lambda_{Luft2}}{\delta} \frac{S_{Kleber}}{\delta} +$$

$$\lambda_{\Sigma} = \lambda_{Schicht} = \lambda_{Luft} + \Delta\lambda_{Kleber+Flock} = \lambda_{0} + \lambda_{K} + \lambda_{S1} + \Delta\lambda_{Kleber+Flock}. \tag{5.99}$$

Если  $\lambda_{Luft} \approx \lambda_0$ ,

$$\Delta \lambda_{Kleber+Flock} \approx \lambda_0 \frac{A_{Kleber}}{A} \frac{S_{Kleiber}}{\delta} \left( I + \frac{A_{Flock}}{A_{Kleber}} \frac{\lambda_{Flock}}{\lambda_0} \right) + \lambda_0 \frac{A_{Flock}}{A} \left( \frac{\lambda_{Flock}}{\lambda_0} - I \right) \approx \Delta \lambda_{Kleber} + \Delta \lambda_{Flock}.$$
 (5.100)

где 
$$\Delta \lambda_{Flock} \approx \lambda_0 \frac{A_{Flock}}{A} \left( \frac{\lambda_{Flock}}{\lambda_0} - 1 \right),$$
 (5.101)

$$\Delta \lambda_{Kleber} \approx \lambda_0 \frac{A_{Kleber}}{A} \frac{S_{Kleiber}}{S} \left( 1 + \frac{A_{Flock}}{A_{Kleber}} \frac{\lambda_{Flock}}{\lambda_0} \right). \tag{5.102}$$

### 5.3.3. Влияние мембраны на теплопроводность структуры

Эквивалентная схема переноса тепла через всю структуру представлена ниже. Оценим влияние мембраны ( $\Delta\lambda_{\text{Membran}}$ ) на  $\lambda_{\text{Struktur}}$ :  $\lambda_{\text{Struktur}} = \lambda_{\Sigma} + \Delta\lambda_{\text{Membran}}$ .

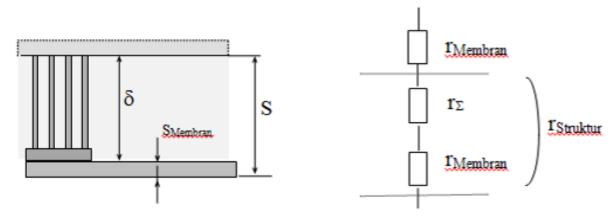



Рис. 5.51. Схема переноса тепла через структуру ТИФМ

Тепловое сопротивление всей структуры  $r = \frac{S}{\lambda} = \frac{\Delta T}{q}$  является суммой тепловых сопротивлений промежутка и мембраны (рис. 5.51).

$$r_{Struktur} = r_{Membran} + r_{\Sigma}$$

$$S = \delta + S_{Membran}$$

$$\frac{S}{\lambda_{Struktur}} = \frac{S_{Membran}}{\lambda_{Membran}} + \frac{\delta}{\lambda_{\Sigma}} = \frac{S_{Membran}\lambda_{\Sigma} + \delta\lambda_{Membran}}{\lambda_{Membran}\lambda_{\Sigma}}.$$
(5.103)

Тогда общий коэффициент теплопроводности:

$$\lambda_{Struktur} = \frac{(\delta + S_{Membran})\lambda_{Membran}\lambda_{\Sigma}}{S_{Membran}\lambda_{\Sigma} + \delta\lambda_{Membran}}.$$
(5.104)

Если  $S_{Membran} < \delta$  и  $\lambda_{\Sigma} < \lambda_{Membran}$ ,

To 
$$\lambda_{Struktur} \approx \frac{(\delta + S_{Membran})\lambda_{Membran}\lambda_{\Sigma}}{\delta\lambda_{Membran}} = \left(1 + \frac{S_{Membran}}{\delta}\right)\lambda_{\Sigma},$$
 (5.105)

$$\Delta \lambda_{Membran} = \lambda_{Struktur} - \lambda_{\Sigma} \approx \lambda_{\Sigma} \frac{S_{Membran}}{\delta}.$$
 (5.106)

Из соотношения (5.106) видим, что для уменьшения теплопроводности всей структуры необходимо, чтобы соотношение между толщиной мембраны и толщиной промежутка было как можно меньше. Для этого нужно использовать самые тонкие материалы-основы и длинный ворс для создания разделительного промежутка.

Моделирование структуры и проведенные расчёты позволили сузить количество натурных экспериментов. Например, стало ясно, что оптимальной будет длина ворса от 2 до 3 мм. В дальнейшем это было подтверждено исследованиями.

# 5.4. Экспериментальная оценка влияния структурных параметров теплоизоляционного флокированного материала на его свойства

Для экспериментального подтверждения предположения о высокой эффективности многослойного теплоизоляционного материала были проведены масштабные исследования по оценке различных материальных и структурных параметров: ворса, клея, характера распределения ворсового слоя, материала мембраны (основы). После наработки самих электрофлокированных материалов с локальным нанесением ворса готовили многослойные пакеты и определяли их основные характеристики.

# 5.4.1. Влияние характеристик ворсового слоя на основные показатели теплоизоляционного материала

Исследования проводили с использованием полиамидного ворса различной толщины и линейной плотности, водного акрилового клея и полиэфирной алюминизированной пленки толщиной 12 мкм. Были испробованы различные варианты локального нанесения ворса: параллельными и перекрещивающимися линиями, кольцами, точками. В результате, было выбрано точечное нанесение как наиболее экономичное и рациональное. Исследования влияния коэффициента заполнения проводились с использованием ворса длиной 3 мм, линейной плотностью 2.2 текс. Клей наносили через сетчатый шаблон толщиной 0.05 мм. Коэффициент заполнения D – это доля (в процентах) флокированной поверхности по отношению ко всей площади поверхности. Опыты показали, что понижение коэффициента заполнения ведет к понижению теплопроводности и плотности материала (maбn. 5.13).

Таблица 5.13. Влияние коэффициента заполнения на основные свойства

#### Значения для коэффициента заполнения Характеристика D, % 10 5 100 3.6 Коэффициент теплопроводно-0.053 0.032 0.029 0.027 сти λ, Вт/м·К Плотность $\rho$ , $\kappa \Gamma/M^3$ 25 17 98 11

### теплоизоляционного материала

Для структур с длиной волокон 3 мм понижение величины D от 100 % до 10 % ведет к снижению  $\lambda$  на 60 %. Плотность получаемых структур составила от 10 до 25 % в сравнении с флокированием по всей площади. Экспериментальные данные, представленные в maбn. 5.14, показывают, что при сплошном флокировании с уменьшением плотности нанесения ворса плотность всего пакета уменьшается на 30 %, а теплопроводность — на 14 %. Для структур с малым коэффициентом D эти характеристики уменьшаются только на 2—3 %. Это говорит о преобладающем влиянии на теплопроводность посредством твердого компонента коэффициента заполнения.

Увеличением длины ворса можно понизить число единичных флокированных слоев в пакете для достижения требуемой теплопроводности и понизить плотность ТИФМ за счет увеличения толщины воздушных прослоек между мембранами. Результаты испытаний показали, что использование ворса длиной свыше 2 мм улучшает свойства пакета, а длиной 4 мм начинает эти свойства ухудшать (maбn. 5.15) [172].

Таблица 5.14. Влияние числа волокон на основные свойства теплоизоляционного материала

| Характеристика                                                        | Значение для коэффициента заполнения D, % |       |       |       |       |       |  |  |
|-----------------------------------------------------------------------|-------------------------------------------|-------|-------|-------|-------|-------|--|--|
|                                                                       |                                           | 3.6   |       |       |       |       |  |  |
| Плотность нанесения ворса флокированных элементов n, мм <sup>-2</sup> | 46                                        | 87    | 90    | 17    | 24    | 35    |  |  |
| Число волокон, $10^6 \cdot \text{м}^{-2}$                             | 1.7                                       | 3.1   | 3.3   | 17    | 24    | 35    |  |  |
| Коэффициент теплопроводности λ, Вт/м К                                | 0.028                                     | 0.028 | 0.029 | 0.046 | 0.047 | 0.053 |  |  |
| Плотность материала $\rho$ , кг/м <sup>3</sup>                        | 11                                        | 11    | 12    | 60    | 72    | 98    |  |  |

Таблица 5.15. Влияние длины ворса на основные свойства теплоизоляционного материала

| Характери-                               |             | Значения при коэффициенте заполнения D, % |                  |                  |                  |                   |                  |                  |  |
|------------------------------------------|-------------|-------------------------------------------|------------------|------------------|------------------|-------------------|------------------|------------------|--|
| стика                                    |             | 3.                                        | .6               |                  | 100              |                   |                  |                  |  |
| Длина волок-                             | 1           | 2                                         | 3                | 4                | 1                | 2                 | 3                | 4                |  |
| на ворса, мм                             | 1           |                                           | 3                | 7                | 1                |                   | 3                | <b>T</b>         |  |
| Линейная                                 |             |                                           |                  |                  |                  |                   |                  |                  |  |
| плотность                                | 0.67        | 2.2                                       | 2.2              | 4.4              | 0.67             | 2.2               | 2.2              | 4.4              |  |
| волокна, текс                            |             |                                           |                  |                  |                  |                   |                  |                  |  |
| Плотность                                |             |                                           |                  |                  |                  |                   |                  |                  |  |
| нанесения                                | 279         | 77                                        | 87               | 49               | 234              | 50                | 35               | 24               |  |
| ворса, мм-2                              |             |                                           |                  |                  |                  |                   |                  |                  |  |
| Число воло-                              | $10.10^{6}$ | $2.8 \cdot 10^6$                          | $3.1 \cdot 10^6$ | $1.8 \cdot 10^6$ | $2.3 \cdot 10^8$ | 5·10 <sup>7</sup> | $3.5 \cdot 10^7$ | $2.4 \cdot 10^7$ |  |
| кон, м <sup>-2</sup>                     | 10.10       | 2.0.10                                    | 3.1.10           | 1.0.10           | 2.3.10           | 3.10              | 3.3.10           | 2.4.10           |  |
| Коэффициент                              |             |                                           |                  |                  |                  |                   |                  |                  |  |
| теплопро-                                | 0.029       | 0.028                                     | 0.028            | 0.029            | 0.077            | 0.056             | 0.052            | 0.061            |  |
| водности λ,                              | 0.029       | 0.028                                     | 0.028            | 0.029            | 0.077            | 0.036             | 0.053            | 0.001            |  |
| Вт/м-К                                   |             |                                           |                  |                  |                  |                   |                  |                  |  |
| Плотность $\rho$ , $\kappa \Gamma / M^3$ | 20          | 12                                        | 11               | 12               | 184              | 121               | 98               | 105              |  |

Сравнивая материалы, полученные с использованием ворса различной толщины, при  $D={\rm const}=3.6$  % видим, что с уменьшением толщины уменьшаются теплопроводность и плотность пакета. Экспериментальные данные с ворсом длиной 3 мм от 2.2 до 0.67 текс показывают уменьшение  $\lambda$  от 0.028 до 0.026 BT/м·К и плотности от 11 до 8 кг/м³ [172], [173], что является следствием пониженной материалоемкости. Проведенные параллельно исследования сжимаемости пакетов флокированного материала показали, что линейная плотность 0.67 текс слишком низка для ворса длиной 3 мм, поэтому дальнейших исследований геометрий ворса не проводили.

В *табл.* 5.16 показано влияние толщины клея на теплопроводность и плотность ТИФМ. Для изготовления лабораторных образцов был использован сетчатый шаблон и металлические перфорированные пластины, так как с помощью сетчатых шаблонов не получить толщину слоя клея 0.3 мм для ворса длиной 3 мм. Полученные данные показывают, что увеличение толщины слоя клея при D = 3.6 % привело к увеличению плотности нанесения ворса и незначительному увеличению плотности и теплопроводности. Однако увеличенная толщина клеевого слоя существенно снижает сжимаемость пакета, поэтому высокие теплоизоляционные свойства и низкая плотность будут лучше сохраняться при эксплуатации материала.

Таблица 5.16. Влияние толщины слоя клея на основные свойства теплоизоляционного флокированного материала

| Характеристика                              | Значени          | Значения для коэффициента заполнения D, % |                  |                  |                  |  |  |  |
|---------------------------------------------|------------------|-------------------------------------------|------------------|------------------|------------------|--|--|--|
| Ларактеристика                              |                  | 3.6                                       | 5                |                  |                  |  |  |  |
| Шаблон для нанесения ворса                  | Сетка<br>21Т     | Перфори-<br>рованный                      | Сетка<br>21Т     | Перфо<br>вані    | <b>^ .</b>       |  |  |  |
|                                             | 211              | 0.5 мм                                    | 211              | 0.5 мм           | 1 мм             |  |  |  |
| Плотность нанесения ворса, мм <sup>-2</sup> | 87               | 190                                       | 102              | 107              | 107              |  |  |  |
| Толщина клея в сухом виде, мм               | 0.05             | 0.20                                      | 0.05             | 0.20             | 0.54             |  |  |  |
| Число ворсинок, м <sup>-2</sup>             | $3.1 \cdot 10^6$ | $6.8 \cdot 10^6$                          | $5.1 \cdot 10^6$ | $5.4 \cdot 10^6$ | $5.4 \cdot 10^6$ |  |  |  |
| Коэффициент теплопроводности,<br>Вт/м·К     | 0.028            | 0.031                                     | 0.029            | 0.030            | 0.031            |  |  |  |
| Плотность, $\kappa \Gamma / M^3$            | 11               | 21                                        | 17               | 23               | 26               |  |  |  |

Видно, что по таким важным показателям, как коэффициент теплопроводности и плотность, разработанный ТИФМ превосходит все известные аналоги (см. *приложение* E).

Таким образом, лучшими структурными характеристиками единичного слоя теплоизоляционного флокированного материала являются:

Коэффициент заполнения.....3-5 %

Длина волокон......2-3 мм

Линейная плотность волокон..........2.2 текс

Структура ТИФМ, полученная в результате теоретических разработок и экспериментальных исследований [174]–[177], защищена патентами [178]–[180].

В дальнейшем эксперименты проводили, используя равномерное точечное нанесение ворса со следующими структурами:

| Структура                           | C1  | C2 |
|-------------------------------------|-----|----|
| Диаметр флокированных точек, мм     | 2   | 5  |
| Коэффициент заполнения, %           | 3.6 | 5  |
| Расстояние между центрами точек, мм | 10  | 20 |

### **5.4.2.** Влияние вида и расположения мембран на основные показатели теплоизоляционного материала

Моделирование структуры и расчеты показали, что теплопроводность зависит в том числе от материала, из которого изготовлена мембрана, от ее отражающей способности. Для экспериментального подтверждения этого предположения проведены исследования основных характеристик теплоизоляционных пакетов, составленных из мембран, изготовленных из материалов различной структуры, различной природы, с использованием различных металлизаций.

Материалы, металлизированные вакуумтермическим способом, и материалы не металлизированные имеют практически одинаковые жесткость, драпируемость и воздухопроницаемость [181]. Это объясняется исключительно малой толщиной металлического слоя. Для проведения экспериментов были специально получены нетканые полотна с металлизацией и пленка с двухсторонней металлизацией. Для выявления оптимальных свойств ТИФМ были проведены исследования теплоизоляционных свойств однородных пакетов, состоящих из нескольких (чаще всего 10) слоев флокированных мембран и верхнего нефлокированного покровного слоя. Основные свойства использованных мембран приведены в *табл. 5.17*.

Таблица 5.17. Характеристики мембран для изготовления ТИФМ

| Но-<br>мер<br>мем-<br>бра-<br>ны | Структура<br>материала | Веще-<br>ство<br>мате-<br>риала | Наличие<br>и вид метал-<br>лизации | Поверх-<br>ностная<br>плот-<br>ность,<br>г/м | Коэф-<br>фици-<br>ент<br>отра-<br>жения<br>R, % | Коэффициент заполнения площади прифлокировании D, |
|----------------------------------|------------------------|---------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------------|---------------------------------------------------|
| 1                                | Пленка                 | ПЭФ                             | Al, двухсто-<br>ронняя             | 12 мкм<br>(5 г/м <sup>2</sup> )              | I                                               | 1.3                                               |
| 2                                | <b>»</b>               | ПЭФ                             | Al, односто-<br>ронняя             | 12 мкм<br>(5 г/м <sup>2</sup> )              | I                                               | 1.3                                               |
| 3                                | <b>»</b>               | ПЭФ                             | Нет                                | 12 мкм<br>(5 г/м <sup>2</sup> )              | ı                                               | 1.3                                               |
| 4a                               | <b>»</b>               | ПЭФ                             | Al, односто-<br>ронняя             | 6 MKM $(2.5 \text{ F/M}^2)$                  | 81                                              | 3.6                                               |
| 4                                | <b>»</b>               | ПЭФ                             | » »                                | 6 MKM $(2.5 \text{ F/M}^2)$                  | 81                                              | 5                                                 |
| 5                                | Ткань                  | ПА                              | Cu                                 | 81 г/м <sup>2</sup>                          | 48                                              | 5                                                 |
| 6                                | <b>»</b>               | ПА                              | Cu                                 | 50 г/м <sup>2</sup>                          | _                                               | 5                                                 |
| 7                                | <b>»</b>               | ПА                              | Al                                 | 37 г/м <sup>2</sup>                          | _                                               | 5                                                 |
| 8                                | <b>&gt;&gt;</b>        | ПА                              | Al                                 | 35 г/м <sup>2</sup>                          | _                                               | 5                                                 |

| 9a | <b>»</b>        | ПА | Ag | 46 г/м <sup>2</sup> | 33 | 3.6 |
|----|-----------------|----|----|---------------------|----|-----|
| 9  | <b>&gt;&gt;</b> | ПА | Ag | 46 г/м <sup>2</sup> | 33 | 5   |

Окончание табл. 5.17

| Но-<br>мер<br>мем-<br>бра-<br>ны | Структура<br>материала | Веще-<br>ство<br>мате-<br>риала | Наличие<br>и вид метал-<br>лизации | Поверх-<br>ностная<br>плот-<br>ность,<br>г/м | Коэф-<br>фици-<br>ент<br>отра-<br>жения<br>R, % | Коэффи-<br>циент<br>заполне-<br>ния пло-<br>щади при<br>флокиро-<br>вании D, |
|----------------------------------|------------------------|---------------------------------|------------------------------------|----------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|
| 10a                              | Нетканое полотно       | ПА                              | Cu                                 | 82 г/м <sup>2</sup>                          | 31                                              | 3.6                                                                          |
| 10                               | » »                    | ПА                              | Cu                                 | $82 \text{ г/m}^2$                           | 31                                              | 5                                                                            |
| 11a                              | » »                    | ПА                              | Ag                                 | $49 \text{ r/m}^2$                           | 38                                              | 3.6                                                                          |
| 11                               | » »                    | ПА                              | Ag                                 | $49 \text{ r/m}^2$                           | 38                                              | 5                                                                            |
| 12a                              | » »                    | ПП                              | Нет, цвет<br>антрацит              | 50 г/м2                                      | 23                                              | 3.6                                                                          |
| 12                               | » »                    | ПП                              | » »                                | 50 г/м2                                      | 23                                              | 5                                                                            |
| 13                               | » »                    | ПП                              | Нет                                | 50 г/м2                                      | _                                               | 5                                                                            |
| 14a                              | » »                    | ПП                              | Al                                 | 51 г/м2                                      | 44                                              | 3.6                                                                          |
| 14                               | » »                    | ПП                              | Al                                 | 51 г/м2                                      | 44                                              | 5                                                                            |
| 15                               | » »                    | ПП                              | Нет                                | 10 г/м2                                      | _                                               | 5                                                                            |
| 16                               | » »                    | ПП                              | Al                                 | 10 г/м2                                      | _                                               | 5                                                                            |
| 17                               | » »                    | Стекло                          | Нет                                | 40 г/м2                                      | _                                               | 5                                                                            |
| 18                               | » »                    | <b>&gt;&gt;</b>                 | Al                                 | 12 г/м2                                      | _                                               | 5                                                                            |
| 19                               | » »                    | <b>&gt;&gt;</b>                 | Нет                                | 10 г/м2                                      | 1                                               | 5                                                                            |
| 20                               | » »                    | Ара-<br>мид                     | Al                                 | 8 г/м2                                       | _                                               | 5                                                                            |
| 21                               | » »                    | <b>»</b>                        | Нет, цвет<br>желтый                | 9 г/м2                                       | _                                               | 5                                                                            |
| 22                               | Фольга                 | Алюминий                        |                                    | $10 \text{ мкм}$ $(28 \text{ г/m}^2)$        | _                                               | 5                                                                            |
| 23                               | <b>»</b>               | » »                             | ·                                  | 13 мкм<br>(35 г/м <sup>2</sup> )             | _                                               | 5                                                                            |

Показатели теплопроводности и плотности пакетов ТИФМ на основе различных мембран показаны на гистограммах на *рис.* 5.52 и 5.53. Как показали экспериментальные исследования, теплоизолирующая способность пакета ТИФМ, состоящего из однородных флокированных слоев, зависит от воздухопроницаемости, поверхностной плотности, оптических свойств и теплоёмкости мембран.

Отражательная способность металлизированных полотен зависит не только от использованного металла, но и от структуры самого полотна (образцы 4 и 14, 9 и 11, 5 и 10).

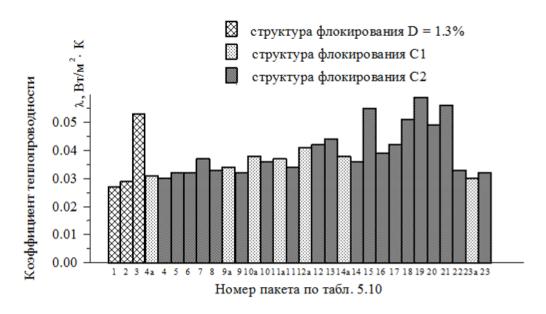



Рис. 5.52. Коэффициент теплопроводности однородных пакетов ТИФМ

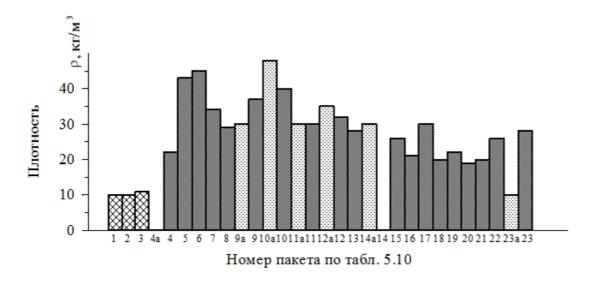



Рис. 5.53. Плотность однородных пакетов ТИФМ

В подавляющем большинстве опытов использование металлизированных мембран повышает теплоизоляционные свойства и незначительно уменьшает плотность пакета. Двухсторонняя металлизация пленки дает почти такие же результаты, что и односторонняя. Металлизация уменьшает коэффициент теплопроводности пакета на 15–45 % (образцы 2, 4 и 3; 13 и 14; 15 и 16; 18 и 19; 20 и 21) и снижает его плотность на 5–20 % (образцы 1, 2 и 3; 15 и 16; 18 и 19; 20 и 21). Снижение плотности обусловлено, вероятно, различиями в процессе флокирования мембран. Как и следовало ожидать, поверхностная плотность мембран влияет на общую плотность пакета (рис. 5.54).

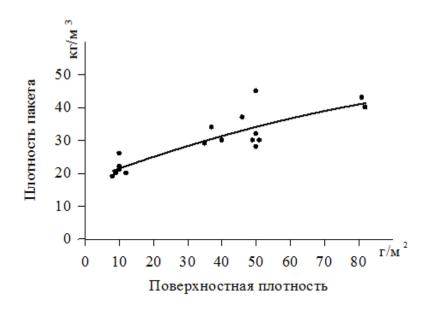



Рис. 5.54. Влияние поверхностной плотности мембраны на плотность ТИФМ

Как видим, применение даже самых легких высокотехнологичных мембран не позволяет снизить плотность структуры ниже 20 кг/м<sup>3</sup>. Использование же коэффициента поверхностного заполнения при флокировании ниже 3 % приводит к сминаемости ворсовых элементов и провисанию пленки между ними при формировании пакетов и в конечном счете к потере теплоизолирующей способности при конфекционировании [182], [183].

Таким образом, с точки зрения уменьшения теплоизолирующей способности, мембраны располагаются в ряду: пленка металлизированная, металлизированные ткани, фольга, металлизированные нетканые полотна, неметаллизированная пленка и нетканые полотна. По повышению плотности пакета ряд выглядит следующим образом: тонкие нетканые полотна, пленка, алюминиевая фольга, более толстые нетканые полотна, ткани металлизированные. Анализируя суммарно оба показателя, можно воспользоваться коэффи-

циентом эффективности (*табл. 5.18*) 
$$K_{\ni} = \frac{1}{\lambda \cdot \rho}$$
,

где  $\lambda$  – коэффициент теплопроводности однородного пакета ТИФМ,  $B \tau / M \cdot K$ ;  $\rho$  – плотность однородного пакета ТИФМ,  $\kappa r / M^3$ .

Таблица 5.18. Коэффициент эффективности мембран

| Номер образца по <i>табл. 5.17</i> | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |
|------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Кэ                                 | 1.5 | 0.7 | 0.7 | 0.8 | 1.0 | 0.8 | 0.7 | 1.0 | 0.7 | 0.8 |
| Номер образца по <i>табл. 5.17</i> | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  |

| Кэ | 0.9 | 0.7 | 1.2 | 0.8 | 1.0 | 0.8 | 1.1 | 0.9 | 1.2 | 1.1 |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|

По этому показателю лидирующие позиции занимают металлизированная пленка (со значительным отрывом) и тонкие нетканые алюминизированные полотна и фольга, а также серебрёные ткань и нетканое полотно средней поверхностной плотности ( $\sim 50~\text{г/M}^2$ ).

Учитывая область применения теплоизоляционного материала, необходимо выбирать ту или иную из этих наиболее эффективных мембран, имея в виду ее специфические свойства: негорючесть, термостойкость, способность формоваться, хрупкость, жесткость или мягкость при изгибе, воздухо-, парои влагопроницаемость и др.

В развитие исследований проведены эксперименты со смешанными пакетами и пакетами, содержащими термостойкие нетканые полотна, дублированные фольгой (дублирование проводили в лабораторных условиях с помощью распыляемого клея). Флокирование проводили по структуре С2. Составы пакетов представлены в *табл. 5.19*.

Таблица 5.19. Составы смешанных пакетов ТИФМ<sup>1</sup>

| Номер пакета                   | Описание состава                                                                                   |
|--------------------------------|----------------------------------------------------------------------------------------------------|
| 24 (пленка)                    | 1 слой № 2 + 4 слоя № 3 + 1 слой № 2 + 4 слоя № 3 + 1 покровный слой № $2^2$                       |
| 25 (арамид Al / арамид 1:1)    | Чередование слоев № 20 и № 21 (1:1) с покровным слоем № 20                                         |
| 26 (арамид Al / арамид 2:2)    | Чередование слоев № 20 и № 21 (2:2) с покровным слоем № 20                                         |
| 27 (стекло Al / стекло<br>1:1) | Чередование слоев № 18 и 17 (1:1) с покровным слоем № 18                                           |
| 28 (стекло Al / стекло<br>2:2) | Чередование слоев № 18 и 17 (2:2) с покровным слоем № 18                                           |
| 29 (фольга / стекло 1:1)       | Чередование слоев № 22 и 18 (1:1) с покровным слоем № 22                                           |
| 30 (фольга / стекло 2:2)       | Чередование слоев № 22 и 18 (2:2) с покровным слоем № 22                                           |
| 31 фольга + стекло             | Дублированные слои № 21 и 23. Поверхностная плотность мембраны до флокирования 47 г/м²             |
| 32 фольга + арамид             | Дублированные слои № 19 и 23. Поверхностная плотность мембраны до флокирования 50 г/м <sup>2</sup> |

 $<sup>^{1}</sup>$ Пакет для измерений набирали толщиной около 3 см. Номера слоев указаны по *табл*.

<sup>5.17</sup>.  $^{2}$ Использовано флокирование с D=1.3~%.

Основные свойства пакетов показаны на рис. 5.55 [182].

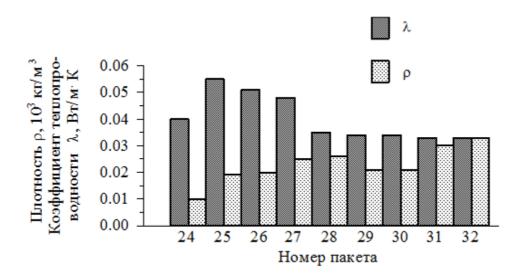



Рис. 5.55. Коэффициент теплопроводности и плотность смешанных пакетов ТИФМ

Анализ свойств смешанных пакетов ТИФМ показал, что их свойства, как правило, занимают промежуточное положение по отношению к свойствам однородных пакетов из тех же мембран (пакеты 25 и 26 по отношению к 21 и 20; пакеты 27 и 28 по отношению к 17 и 18; пакеты 29 и 30 по отношению к 18 и 22). Пакеты, набранные из дублированных фольгой материалов, по своим свойствам ближе к фольге. В ряде случаев чередование слоев 2 : 2 более эффективно, чем 1 : 1 (образцы 28 и 27, 26 и 25).

Таким образом, исследования показали, что применение смешанных пакетов целесообразно, особенно, если учесть, что цена металлизированного полотна выше, чем без металлизации. Важно при этом, чтобы внешние слои пакета имели металлизацию.

В разд. 6.4 приведены исследования по конфекционированию ТИФМ применительно к области применения.

### Глава 6. РАЗРАБОТКА ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ОБОРУДОВАНИЯ ДЛЯ СОЗДАНИЯ МАТЕРИАЛОВ С ЛОКАЛЬ-НЫМ НАНЕСЕНИЕМ ВОРСА

#### 6.1. Рекомендации по разработке рисунков для печати ворсом

Рисунки для текстильного печатания можно условно разделить по назначению на две основные категории: рисунки для одежных и для декоративных материалов. Последние относительно долговечны, менее чувствительны к изменению моды. Это настенные и напольные полотна, занавеси, покрывала, материалы для обивки мебели. Как правило, в них используются рисунки с большими раппортами или яркие линии, иногда полосы, лучше выделяющиеся на контрастном фоне и зрительно увеличивающие объем помещений. Цвет, хотя и заслуживает внимания, играет менее важную роль, чем рисунок. В одежных материалах, наоборот, рисунок менее важен, он служит равномерному распределению красок и создает общее впечатление. Для этих материалов большее значение имеют модные тенденции.

Существует несколько основных принципов практики текстильной печати. Четыре основных цвета печати — черный, красный, синий и желтый. С их помощью получают бесчисленное разнообразие рисунков. Черный цвет — это «душа» всех рисунков, особенно двух- или трехцветных. Лучший фон — белый. При изготовлении эскиза всегда необходимо помнить, что рисунок на полотне менее привлекателен, чем на бумаге. Рисунки для декоративных тканей должны иметь достаточный раппорт и не повторяться слишком часто на небольшом участке полотна.

Для достижения высокого качества флокированных узоров еще более, чем при печати красками, важно правильно подобрать рисунок. Поскольку этот метод имеет меньшую по сравнению с печатью красками разрешающую способность, не всегда можно без изменений использовать рисунки для краскопечати.

Количество цветов ворсового рисунка ограничено, наиболее приемлемы одно-, двух- или трехцветные рисунки. Этот недостаток можно компенсировать изяществом и выразительностью контуров. Кроме того, можно комбинировать печать ворсом с печатью красками. При этом проводят нанесение ворса на предварительно напечатанную основу или, наоборот, художественно изменяют готовую печать ворсом. Использование таких комбинаций должно быть учтено в эскизе. Поскольку ворс меняет фактуру текстильного материала или бумаги и изменяет их свойства, необходимо соблюдать оптимальное соотношение между флокированной и открытой площадями.

Выбор цвета ворса не должен рассматриваться как передача оттенков оригинала. Ворсовый рисунок не станет лучше от использования множества цветов. При выборе цвета необходимо сочетать оттенок с длиной ворса. В не-

которых случаях эффектно использовать меланжи. Выбор длины ворса зависит главным образом от вида флокируемого материала. Для отделки одежды и других пористых и рыхлых материалов подходит ворс длиной 0.5-2 мм, а для изготовления флокированных виньеток на бумажной или иной плотной основе -0.3-0.4 мм.

Можно управлять цветовой картиной за счёт окраски клея. Особенно важна направленная пигментация клея при печати темных поверхностей, чтобы яркий сам по себе ворс не казался тусклым и не приобрел грязноватый оттенок. Обязательно нужно проводить подкрашивание клея в цвет ворса на линиях толщиной менее 0.5 мм.

Надписи можно воспроизводить только достаточно крупные и недлинные. Утолщенные, ровные шрифты больше подходят, чем тонкие, например, рукописный. Толщина букв после флокирования увеличивается на длину ворса, и это необходимо учитывать при изготовлении шаблонов фирменных надписей и товарных знаков, иначе готовый рисунок не будет соответствовать оригиналу. Чем изящнее шрифт и меньше его толщина, тем заметнее проявляется отклонение.

Изображения людей или животных неуместно флокировать на многоцветную основу. Наилучшим образом выглядят стилизованные флокированные силуэты на нейтральном фоне. Различные виды орнаментов наиболее подходят для печати ворсом. Особенно привлекательно выглядит сочетание штрихов и сплошных флокированных участков, часто создающее объемное впечатление.

### 6.2. Разработка рекомендаций для нанесения локального флокированного рисунка методом термопереноса

Результатом исследований, приведённых в разд. 3.3, стала разработка технологии производства термопереносного флокированного материала, блок-схема и описание которой приведены на *рис.* 6.1. В качестве временной основы использовалась бумага пачечная однослойная для упаковки сигарет. Рецептуры временного и основного клеев приведены в *табл.* 6.1.

Расход временного клея для ворса длиной 0.5 мм составляет 90-100 г/м², рекомендуемая длина ворса — не более 1мм. Расход основного клея — около 150 г/м². Динамическая вязкость клея должна составлять 1000-1300 мПа·с. Клей наносится в 1-2 прохода ракли.

В качестве термопластичного компонента рекомендуется полиамидный порошок, имеющий размер частиц 0.15–0.30 мм, расход порошка -40–50 г/м². Время оплавления термопластичного слоя под ИК–лампами составляет 55–65 с. Термоперенос осуществляется при давлении 0.7–0.8 кПа и температуре 170–190 °C. Время переноса -35–45 с. На подложках с нерегулярной поверх-

ностью (махровые, нетканые полотна) параметры давления и время термопереноса играют бо́льшую роль, чем на гладких полотнах.

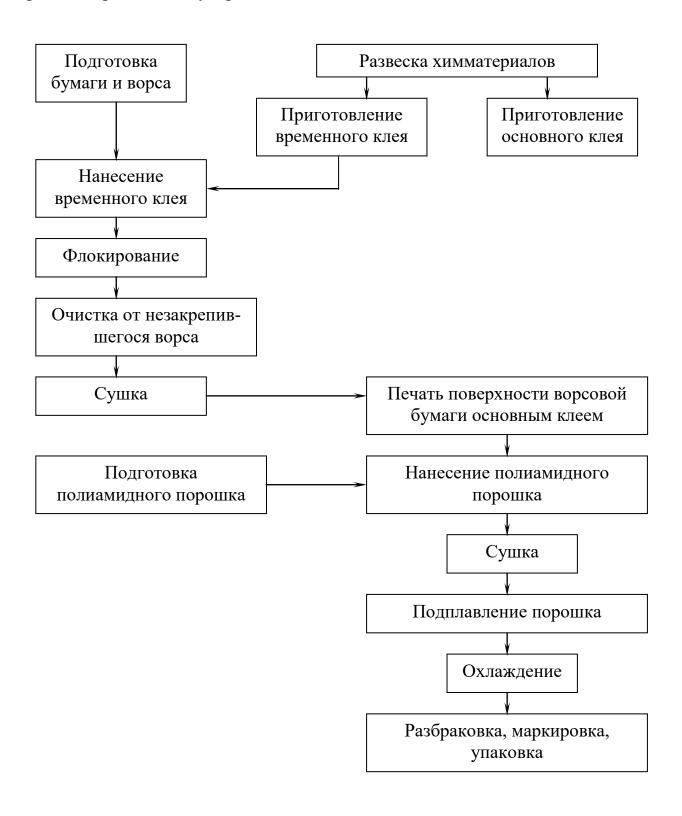



Рис. 6.1. Блок-схема технологического процесса производства термопереносного флокированного материала

Таблица 6.1. Рецептуры временного и основного клеев для изготовления термопереносного флокированного материала

| Компонент                              | Содержан       | ие, мас. ч    |
|----------------------------------------|----------------|---------------|
| KOMHOHEHI                              | Временный клей | Основной клей |
| МБМ-3                                  | 100            | 55–65         |
| AK-211                                 | -              | 35–45         |
| Манутекс RS (3%-ный водный p-p) или    | 15             | -             |
| КМЦ (5%-ный водный р-р)                |                |               |
| ДОФ или ББФ                            | 20–35          | -             |
| Мочевина                               | 25             | -             |
| Гидроксид аммония (10%-ный водный р-р) | до pH = 8÷9    | до pH = 9÷10  |
| AK-216                                 | -              | 10–11         |
| Антивспениватель БА                    | 2              | 0.8–1.2       |
| ДЭГ-1                                  | -              | 8.5–9.5       |

Для производства термопереносных флокированных материалов может использоваться линия, технологическая схема которой приведена на *рис.* 6.2. На выходе получают листы с нанесенными термопереводными ворсовыми рисунками (надписями, эмблемами). В зависимости от устройства печатного узла 2 ворс наносят либо на всю поверхность временной основы, либо по месту в соответствии с эскизом рисунка. Для получения термопереносных ворсовых аппликаций в небольших количествах используется карусельная установка с ИК-сушилкой (см. подразд. 6.5.2).

#### 6.3. Разработка технологии изготовления велюровых обоев

#### 6.3.1. Общее описание технологического процесса

Велюровые (электрофлокированные) обои — это эксклюзивный вид обойной продукции, в котором за счет сочетания краскопечати и нанесения текстильного ворсового покрытия достигается эффект гобеленового полотна. Такие обои могут использоваться для оформления различных интерьеров, в том числе гостиниц и офисов. Технология производства велюровых обоев разрабатывалась применительно к технологической линии фирмы *Köpenicker Maschinenbau GmbH* (Германия), установленной на АО ПТФ «Русь» (С.-Петербург). Схема линии и её технологические характеристики представлены в *приложении Л*. Блок-схемы технологического процесса представлены на *рис. 6.3*. Более сложные рисунки обоев выполняются в три рабочих прохода.

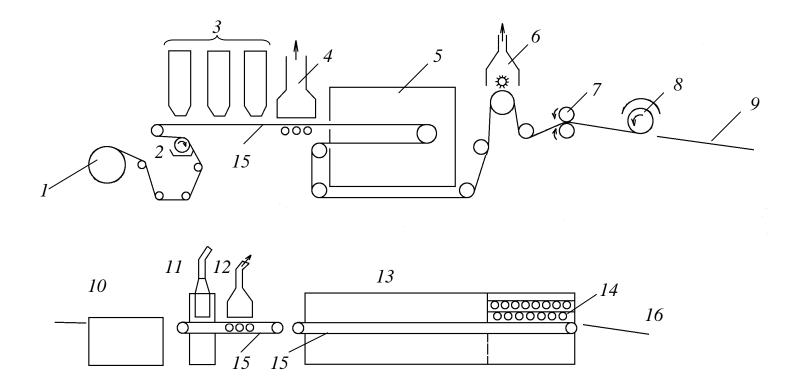



Рис. 6.2. Технологическая схема линии по производству термопереносного флокированного материала в листах:

| I — узел размотки временной основы; | <ul><li>/ – тянульные валы;</li></ul> | <i>13</i> – сушилка;    |
|-------------------------------------|---------------------------------------|-------------------------|
| 2 – узел клеенанесения;             | 8 – резательное устройство;           | <i>14</i> – ИК-сушилка; |
| 3 – флокатор;                       | 9, 16 – стол;                         | 15 – транспорте-        |
|                                     |                                       | ры                      |

*4, 6, 12* – очищающее устройство;

10 – печатная машина;

*5, 13* – сушилка;

11 – устройство для нанесения порошка;

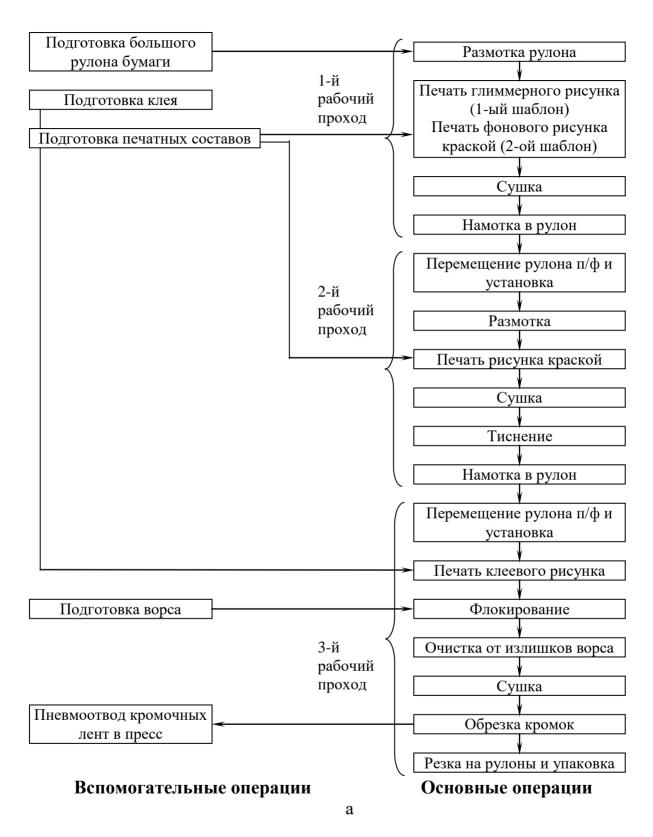



Рис. 6.3. Блок-схемы технологического процесса изготовления велюровых обоев: a — трёхпроходный рисунок,  $\delta$  — двухпроходный рисунок

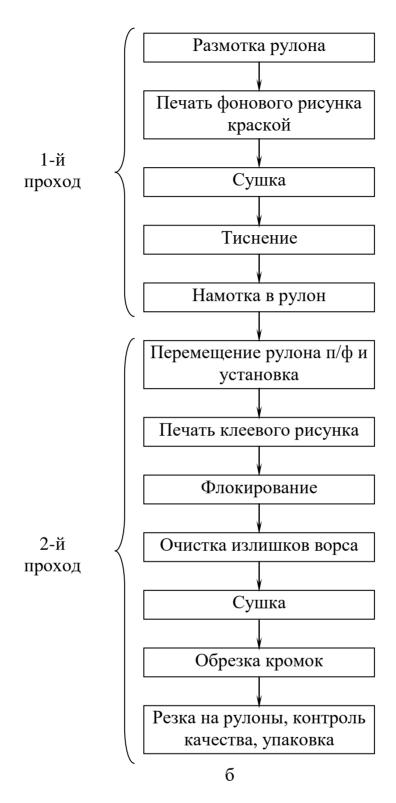



Рис. 6.3. Окончание

Декоративный эффект велюровых обоев достигается сочетанием разнообразных цветов, фактур, рельефности бумаги и ворсового рисунка, поэтому они представляют собой нечто среднее между бумажными обоями и декоративной тканью. Используют тонированную бумагу. Поскольку бумага может по 2–3 раза проходить операцию сушки, необходимо использовать только двухслойную бумагу поверхностной плотностью 120–170 г/м² во избежание усадки и коробления. При разработке технологии опробованы три вида бумаги (*табл. 6.2*). Обойная бумага производства Сясьского ЦБК окзалась непригодной для производства флокированных обоев из-за жесткости, неровноты и излишней шероховатости. Таким образом, не любая обойная бумага, соответствующая стандарту [84], может быть использована.

Таблица 6.2. Характеристики обойной бумаги

|                                           | Производитель |          |                   |  |
|-------------------------------------------|---------------|----------|-------------------|--|
| Характеристика                            | Выборгский    | Сясьский | Cordes & Co GmbH, |  |
|                                           | ЦБК           | ЦБК      | Германия          |  |
| Поверхностная плотность, г/м <sup>2</sup> | 120           | 150      | 167               |  |
| Разрывная нагрузка, кгс (ГОСТ 8047–78)    | 10            | 12       | 9                 |  |
| Капиллярная впитываемость                 | минимальная   |          |                   |  |

Тиснильные пары предусматривают два вида тиснения: «полотняное» и «муаровое», хотя можно обойтись и без тиснения. Для велюровых обоев лучшим является полиамидный флок 0.33 или 0.44 текс длиной 1 мм, так как он меньше заминается, чем вискозный, и рисунок получается более объёмным. Для обеспечения выпуска коллекции велюровых обоев, состоящей из 30 образцов, используют 5 шаблонов для предварительной отделки и 6 шаблонов для клеепечатания. Ротационные никелевые шаблоны выполняют методом гальванопластики. Используют шаблоны 20–30 меш для клеепечатания и 30–68 меш для краскопечатания. Размер раппорта шаблонов – 640 мм. Ширина печатного рисунка зависит от конкретного дизайна и от того, изготовлен ли шаблон для предварительного печатания или печати ворсом и находится в пределах от 535 до 545 мм.

Печатные составы для нанесения фонового или цветного рисунка изготавливают с добавлением органических и минеральных пигментов. Глиммерный рисунок наносят с помощью пигментов, дающих перламутровый или металлический блеск.

Клей для флокирования должен обеспечивать хорошее закрепление ворса после сушки. При разработке составов для краско- и клеепечати решались следующие задачи:

- создание композиций для глиммерной, фоновой и ворсовой печати по бумаге на основе отечественных пленкообразователей, которые пригодны для печати с помощью шаблонов и экологически безвредны;
- достижение реологических свойств композиций, обеспечивающих стабильную вязкость, резкость контуров рисунка, отсутствие воздушных пузырей на отпечатке.

#### 6.3.2. Разработка клея для изготовления велюровых обоев

Печать клеем на бумажной основе требует его высокой вязкости для обеспечения четкости рисунка. Использование ПА-ворса предопределило применение акриловых или ПВА дисперсий с акриловыми синтетическими загустителями. Для оптимизации состава провели эксперимент с клеевыми композициями, содержащими различное количество загустителя и глицерина. Глицерин вводили для увеличения тиражности печати. Составы композиций указаны в *табл. 6.3*.

Таблица 6.3. Состав композиций для печати ворсом по бумаге

| IAMER O HANGARINA                 | Содержание, мас.ч., в композиции |      |      |      |      |      |      |      |      |
|-----------------------------------|----------------------------------|------|------|------|------|------|------|------|------|
| Ингредиенты                       | 1                                | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| Акрэмос 702                       | 100                              | 100  | 100  | 100  | 100  | 100  | 100  | 100  | 100  |
| Акрэмос 404 (загусти-             | 8                                | 8    | 8    | 8    | 8    | 6    | 8    | 10   | 12   |
| тель)                             |                                  |      |      |      |      |      |      |      |      |
| Гидроксид аммония (10%-й раствор) | 1.5                              | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  |
| Антивспениватель БА               | 0.08                             | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
| Глицерин                          | _                                | 3    | 6    | 9    | 12   | 10   | 10   | 10   | 10   |

Для каждой из композиций, использованных для получения пробных образцов, были сняты кривые течения на приборе «Реотест—2» и по ним построены зависимости эффективной вязкости от скорости сдвига. Для сравнения была использована также клеевая композиция VN 4969—21, рекомендованная фирмой *Cordes* (Германия) — изготовителем обойной линии. Поскольку отмечено заметное увеличение вязкости клея в течение рабочей смены, аналогичные измерения были сделаны через 8 часов после приготовления клея (без дополнительного перемешивания). Экспериментальным путем определены пределы вязкости, обеспечивающие четкость отпечатка (визуально) при одновременном сохранении высокой стабильности клея при печати. Последний параметр оценивали по тиражности (в лабораторных испытаниях) и по времени работы шаблона без промывки (при работе технологической линии в производственных условиях).

На *рис.* 6.4 показано влияние загустителя и глицерина на эффективную вязкость клея и выбор состава клея по выбранному экспериментально диапазону вязкости (3800–4200 мПа·с).

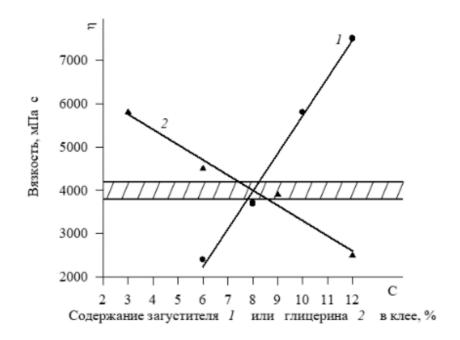



Рис. 6.4. Влияние состава клея на его вязкость ( $D = 333 \text{ c}^{-1}$ ). Заштрихована область допустимой вязкости

Учитывая также влияние глицерина на адгезионные свойства клея и тиражность (puc.~6.5), можно рекомендовать использовать композицию состава (мас. ч.): Акрэмос 702–100; Акрэмос 404–8; гидроксид аммония (10~%) – 1.5; антивспениватель – 0.8; глицерин – 9.

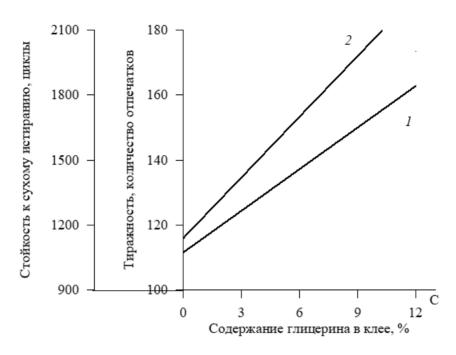



Рис. 6.5. Влияние содержание глицерина в клее на свойства клея *1* и флокированной бумаги *2* 

Важной задачей стало обеспечение стабильной вязкости и сохранение технологических свойств клея при хранении, так как было обнаружено, что клей, приготовленный последовательным введением компонентов, быстро густел, и вязкость его увеличивалась с течение рабочей смены. Проведен эксперимент, в котором варьировали последовательность соединения компонентов и наблюдали за изменением вязкости. В исследованиях использовали выше разработанную композицию на основе Акрэмос 702, но щелочным агентом был 15%-й раствор NaOH (2.5 мас. ч. на 100 мас. ч. пленкообразователя). Это сделано для того, чтобы избавиться от запаха аммиака, мигрировавшего из клея в воздух рабочего помещения.

Приготавливали загущающую смесь ( $\mathbb{N}_2$  1), размешивали, затем основную смесь ( $\mathbb{N}_2$  2), после чего смешивали обе смеси. Варианты смесей приведены в *табл. 6.4*. Кинетика изменения вязкости лучших композиций показана на *рис. 6.6*. Можно рекомендовать приготавливать клеевые композиции по варианту 2, что обеспечивает более стабильную вязкость.

Таблица 6.4. Исследование вариантов загущения

|   | Вари-<br>ант | Загущающая<br>смесь | Основная смесь      | Примечание                 |
|---|--------------|---------------------|---------------------|----------------------------|
| - | 1            |                     | Поточе              | Parkwayawag ayaar waa      |
|   | 1            | Загуститель + ще-   | латекс + глицерин + | Загущающая смесь имеет     |
|   |              | ЛОЧЬ                | + антивспениватель  | вид прозрачного желе. Че-  |
|   |              |                     |                     | рез сутки клей представля- |
|   |              |                     |                     | ет пенообразную массу      |

| 2 | Загуститель +        | Латекс + антивспени-    | Загущающая смесь имеет    |
|---|----------------------|-------------------------|---------------------------|
|   | глицерин + ще-       | ватель                  | вид прозрачной густой     |
|   | лочь                 |                         | пасты                     |
| 3 | Загуститель +        | Латекс + щелочь + ан-   |                           |
|   | глицерин             | тивспениватель          | _                         |
| 4 | Глицерин + ще-       | Латекс + загуститель +  | Система не набирает необ- |
|   | лочь                 | + антивспениватель      | ходимую вязкость          |
| 5 | Последовательное     | соединение компонен-    |                           |
|   | тов: латекс + загуст | гитель + щелочь + анти- | _                         |
|   | вспениватель + гли   | церин                   |                           |

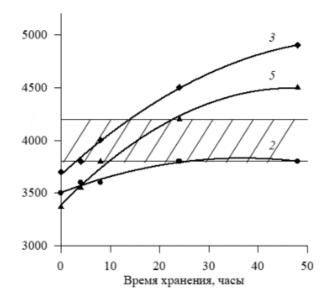



Рис. 6.6. Кинетика изменения вязкости клеевых композиций (номера кривых соответствуют maбn. 6.4)

#### 6.3.3. Исследование пигментирования клеев и печатных составов

При производстве обоев необходимо точное воспроизведение цветовых оттенков, соответствующих выбранному дизайну. Все флокированные обои изготавливают на тонированной бумаге, причем операцию тонирования удобнее и дешевле проводить на бумагоделательном предприятии. Необходимо также строгое соответствие тона ворса тону подготовленной бумажной основы. Непосредственно на технологической линии осуществляется печатание глиммерного рисунка (имеющего перламутровый блеск), нанесение фонового рисунка, печатание основного рисунка, печатание тонированным клеем для закрепления флока.

Автором опробованы различные варианты введения порошкообразных пигментов в воднодисперсионные полимерные композиции на основе акриловых и поливинилацетатных латексов. Установлено, что наиболее удачным является введение в латекс пигмента в смеси его с глицерином в соотношении

1: 1. Оптимальное количество пигментной пасты определялось с помощью коэффициента пропускания (мутности), который измеряли на шаровом фотометре ФМШ–56М. Из рис. 6.7 видно, что коэффициент пропускания изменяется с увеличением содержания пигментной пасты до постоянной величины, характерной для каждого пигмента. Для исследования пигментированные пленки приготавливали на фторопластовых пластинах с номинальной толщиной клеевого слоя 0.7 мм, затем сушили в обычных условиях.

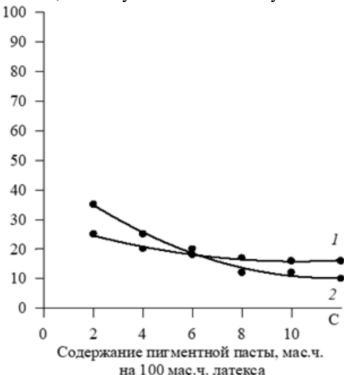



Рис. 6.7. Влияние содержания пигментной пасты на коэффициент пропускания латексной пленки:

1 – крон свинцовый оранжевый; 2 – органический пигмент красный Ж

Физико-механические испытания клеевых пленок показали, что при добавлении пигментной пасты их прочность незначительно возрастает. Также возрастает прочность закрепления ворса (рис. 6.8). Все исследованные показатели примерно одинаковы для органических и минеральных пигментов. Исследования показали, что достаточно вводить 8–10 мас. ч. пигментной пасты (в равных соотношениях пигмента и глицерина) для получения интенсивно окрашенных клеевых пленок. Возможно, увеличение когезионных и адгезионных свойств связующего определяются здесь наличием и пигмента, и глицерина [184].

Отдельно рассмотрены белые пигменты: двуокись титана рутильной (марки P-05) и анатазной (марки A-02) формы и сульфат бария. Диоксид титана рутильной формы имеет полосу поглощения в ближней ультрафиолето-

вой области спектра, которая распространяется на видимую область и является причиной кремового оттенка этой модификации. Коэффициенты преломления  $TiO_2 - 2.71$  (рутил) и 2.55 (анатаз) [185]. В *табл. 6.5* приведена сравнительная оценка плёнок с тремя видами белых пигментов.

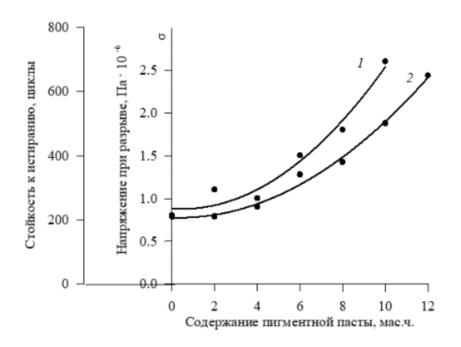



Рис. 6.8. Влияние содержания пигментной пасты на прочность латексной пленки и прочность закрепления ворса (пигмент желтый КЖ-1): 1 — напряжение при разрыве; 2 — стойкость к истиранию

Таблица 6.5. Сравнительные характеристики клеевых пленок на основе

| МЬМ-, | 3 |
|-------|---|
|-------|---|

|                         | Содержание,     | Напряжение          | Относитель- | Коэффици-   |
|-------------------------|-----------------|---------------------|-------------|-------------|
| Пигмент                 | мас. ч. на 100  | при разрыве σ,      | ное удлине- | ент отраже- |
|                         | мас. ч. латекса | 10 <sup>-6</sup> Па | ние, %      | ния, %      |
| BaSO <sub>4</sub>       | 12              | 2.0                 | 410         | 85          |
| TiO <sub>2</sub> (P–05) | 12              | 2.5                 | 3260        | 70          |
| TiO <sub>2</sub> (A–02) | 12              | 1.3                 | 250         | 92          |

Как видим, выбор вида пигмента зависит от того, какую основу предполагается флокировать: эластичную или бумажную. Белых пигментов необходимо вводить 11–13 мас. ч. на 100 мас. ч. латекса (т. е. 22–26 мас. ч. в пересчете на пасту).

Хорошие результаты по укрывистости плёнок получены при смешивании  $TiO_2$  с более дешёвым сульфатом бария в соотношении 1:1. Укрыви-

стость цветных пигментов можно увеличить, вводя их в смеси с равным количеством белого пигмента.

### 6.4. Конфекционирование теплоизоляционноых флокированных материалов и рекомендации по их применению

Конфекционирование предполагает выбор структурных составляющих модулей и способа их соединения для использования в готовом изделии. Теплоизолирующий модуль представляет собой внешнюю оболочку и внутреннюю изолирующую систему. Возможно большое количество различных вариантов исполнения модулей на основе пакета флокированных слоёв ТИФМ. В зависимости от области применения наружная оболочка может быть жесткой или мягкой. Например, жесткий модуль может представлять собой пластину из металлических листов (фольги), между которыми находится изолирующий флокированный пакет. Внутренняя структура модуля определяется количеством слоев флокированных мембран, геометрическими параметрами и видом волокон флокированного покрытия. В наших исследованиях опробованы следующие способы соединения компонентов модуля: ниточный, клеевой и сварной.

При конфекционировании ТИФМ необходимо выполнить следующие операции:

- наслоение (штапелирование), т. е. укладывание друг на друга нескольких слоев флокированной мембраны, операция может выполняться с помощью штапелеукладчика;
- раскраивание (вырезание) пакета по заданному контуру или на куски заданной длины;
- соединение (скрепление слоев пакета, в том числе включая внешнюю оболочку) точечно или по периметру проклеиванием, прошиванием или сваркой;
- $\bullet$  установка, монтаж, вшивание полученного модуля, т. е. использование ТИФМ по назначению в качестве теплоизолирующего материала или модуля заданной формы.

Последовательность выполнения этих операций может быть различной (*puc.* 6.9).



Рис. 6.9. Варианты последовательности операций конфекционирования ТИФМ

При проектировании теплоизоляционных модулей необходимо выбрать такой вид материалов и технологию конфекционирования, которые обеспечат прочность и надежность модулей на весь период эксплуатации.

#### 6.4.1. Исследование способов соединения единичных слоев в модули

В производстве одежды наиболее употребителен ниточный способ соединения деталей. При изготовлении защитной одежды используются комбинированные способы соединения: выполняется ниточная строчка, а затем герметизация шва клеевым закреплением припусков. Соединение деталей из синтетических материалов ниточными швами влечет появление дефектов (стягивание материала по шву, частый обрыв ниток из-за оплавления ушка иглы) и повышенный износ шьющих и транспортирующих органов швейных машин. Поэтому для термопластичных материалов, особенно в техническом секторе, прогрессивными методами соединения деталей являются сварка, склеивание, формование.

Сварной способ соединения флокированных материалов опробован с помощью ультразвукового генератора. Особый интерес представила возможность сварки металлизированных и арамидных слоёв. Предварительные опыты показали, что пакеты из металлизированной пленки лучше свариваются, если они находятся в оболочке из нетканого термопластичного полотна. Прочность сварного шва определяли на разрывной машине PM-3-1 при скорости движения нижнего зажима 150 мм/мин и зажимной длине 100 мм [186]. Определяли силу отрыва нижнего слоя флокированных мембран от остального пакета, так как нижний слой приваривается хуже всего. Исследованы пакеты, содержащие от 2 до 10 слоев ПЭФ алюминизированной пленки ( $\mathbb{N}$  4, *мабл. 6.1*), имеющие точечный флокированный слой с коэффициентом заполнения площади рисунком 10 % [187]. Верхний и нижний слои пакета выполнены из полипропиленового нетканого термоскрепленного материала поверхностной плотностью  $40 \text{ г/m}^2$ . На *рис. 6.10* и *6.11* показаны зависимоверхностной плотностью

сти прочности сварного шва от длины полиамидного ворса и количества слоев в пакете.

Результаты показали, что прочность сварного соединения зависит от выходной мощности УЗ-генератора, длины ворса, числа свариваемых слоев. На свойства сварного шва влияет, безусловно, давление сварочного инструмента на материал и наличие металлизации (с повышением доли заполнения поверхности ворсом и увеличением длины ворса прочность сварного соединения возрастает). Лучшие результаты достигнуты при мощности 80 Вт.

Для пятислойного пакета из арамидного нетканого полотна (№ 21, см. maбn. 5.17) лучший результат достигнут при мощности 85 Вт.

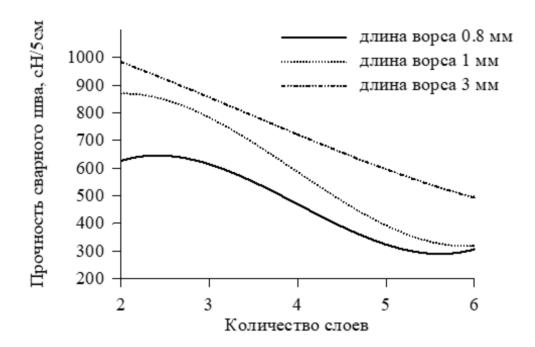



Рис. 6.10. Зависимость прочности сварного шва от количества слоев в пакете и длины ворса

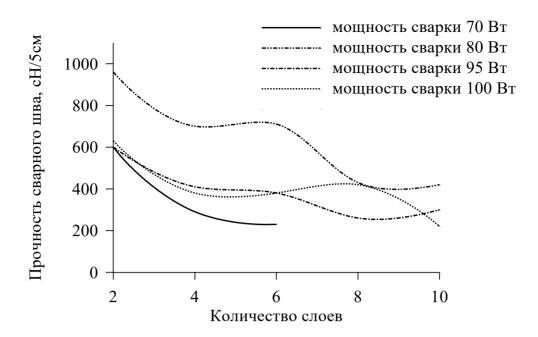



Рис. 6.11. Зависимость прочности сварного шва от количества слоев в пакете и мощности сварки

Исследована возможность сваривания теплоизоляционных модулей, состоящих из термопластичных флокированных мембран (в том числе металлизированных) в оболочке из металлизированных тканей (maбn. 6.6).

Таблица 6.6. Прочность сварного шва комбинированных модулей

| Состав модуля (указаны номера материалов-основ из <i>табл. 5.10</i> )                                       | Достигнутая проч-<br>ность сварного<br>шва, сН/5 см |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1. 4 слоя флокированного арамидного нетканого полотна в оболочке из серебрёной ПА ткани (21 и 9)            | 480                                                 |
| 2. 4 слоя флокированного арамидного нетканого полотна в оболочке из меднёной ПА ткани (21 и 6)              | 640                                                 |
| 3. 4 слоя флокированного металлизированного ПП нетканого полотна в оболочке из серебрёной ПА ткани (16 и 9) | 250                                                 |
| 4. 4 слоя флокированного металлизированного ПП нетканого полотна в оболочке из меднёной ПА ткани (16 и 6)   | 370                                                 |

Исследования показали, что металлизация термопластичных полотен затрудняет сварку, однако, сварные соединения комбинированных пакетов ТИФМ можно использовать.

### 6.4.2. Разработка вариантов конфекционирования применительно к области использования

Выбор материала мембраны, ворса и клея зависит от области применения теплоизоляционного материала. В свою очередь, свойства диктуют и варианты конфекционирования. Предполагаемые варианты изготовления ТИФМ можно разделить в соответствии со схемой, показанной на рис. 6.12, а требования к теплоизолирующим структурам различного назначения сведены в табл. 6.7 [188]. Для опробования ТИФМ в защитной одежде изготовлены пакеты, указанные в табл. 6.8, и исследованы их свойства (табл. 6.9 и рис. 6.13).

К низкотемпературной области можно отнести материалы для одежды (для защиты от высоких и низких температур). К высокотемпературной области можно отнести материалы для изготовления изоляции воздушных судов и летательных аппаратов, космических кораблей, автомобилей, а также защитной одежды пожарных. Несмотря на высокие показатели ТИФМ на основе металлизированной пленки, он, безусловно, не может быть использован во всех вариантах из-за воздухонепроницаемости пленки, ее низкой термостойкости и и низкой изгибной жесткости. Поэтому произвели поиск материалов, которые могли бы заменить плёнку в ТИФМ и одновременно сохраняли бы низкую плотность пакета. Особое внимание уделено металлизированным материалам.

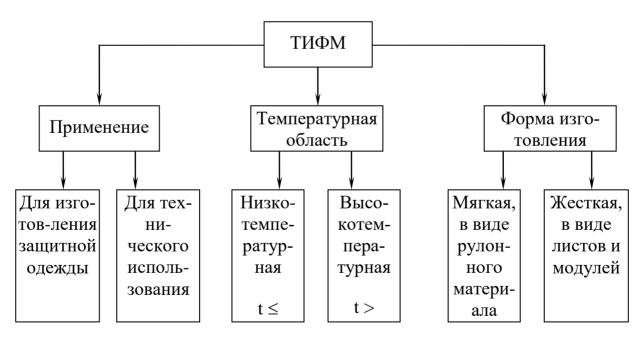



Рис. 6.12. Области применения ТИФМ

# Таблица 6.7. Основные требования, предъявляемые к теплоизоляционным

### материалам различного назначения

|                                    | Необходимость данного свойства при ис- |         |           |           |  |  |
|------------------------------------|----------------------------------------|---------|-----------|-----------|--|--|
|                                    | пользовании для теплоизоляции изделия  |         |           |           |  |  |
|                                    |                                        |         | маты те-  | теплоза-  |  |  |
| Свойства теплоизоляционного        | V47.144.TTV4.0                         | одежда  | плоизо-   | щитные    |  |  |
| материала                          | куртка                                 | для за- | ляцион-   | экраны    |  |  |
| _                                  | пожар-                                 | ЩИТЫ    | ные в са- | для авто- |  |  |
|                                    | НОГО                                   | OT XO-  | молетах и | мобиле-   |  |  |
|                                    |                                        | лода    | судах     | строения  |  |  |
| 1. Низкая масса                    | +                                      | +       | +         | +         |  |  |
| 2. Высокая теплоизолирующая спо-   |                                        |         |           |           |  |  |
| собность                           | +                                      | +       | +         | +         |  |  |
| 3. Воздухо- и паро-проницаемость   | +                                      | +       |           |           |  |  |
| 4. Отсутствие запаха               | +                                      | +       |           |           |  |  |
| 5. Бесшумность при носке           | +                                      | +       |           |           |  |  |
| 6. Отсутствие эмиссии токсичных    |                                        |         |           |           |  |  |
| газов                              | +                                      | +       | +         | +         |  |  |
| 7. Негорючесть                     | +                                      |         | +         | +         |  |  |
| 8. Способность к стирке, химчистке | +                                      |         |           |           |  |  |
| 9. Длительный срок службы          | +                                      | +       |           |           |  |  |
| 10. Комфортность в носке           | +                                      | +       |           |           |  |  |
| 11.Возможность конфекционирова-    |                                        |         |           |           |  |  |
| ния по определенной форме          |                                        |         | +         | +         |  |  |
| 12. Термостойкость                 |                                        |         | +         | +         |  |  |
| 13. Устойчивость к вибрации        |                                        |         | +         | +         |  |  |

Таблица 6.8. Многослойные конструкции теплоизоляционных пакетов для одежды [189]

| Слой              | Защитная куртка пожарника                                                                            | Одежда для защиты<br>от холода |  |
|-------------------|------------------------------------------------------------------------------------------------------|--------------------------------|--|
| Материал<br>верха | Ткань Nomex, 200 г/м <sup>2</sup>                                                                    | Ткань ПА, 170 г/м $^2$         |  |
| Защитный слой     | Паропроницаемая мембрана<br>Sympatex и нетканый материал<br>из волокна Basofil, 120 г/м <sup>2</sup> | _                              |  |
| Теплоизоли-       | Стандартные варианты                                                                                 |                                |  |

| рующий слой | Нетканый материал из волокна $Nomex$ , $167 \text{ г/m}^2$                                                                                                                                                                                                                                          | СТ1 (для холодных помещений) нетканый материал ПЭФ, 150 г/м $^2$ . СТ2 (для холодильных камер) нетканый материал ПЭФ, 235 г/м $^2$ . СТ3 (для холодильных камер) нетканый материал ПЭФ, 345 г/м $^2$ |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|             | Варианты с использованием ТИФМ                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |  |  |  |
|             | А. 1 слой флокированной мембраны 5 ( $D=3.6~\%$ ), 132 г/м² и нетканый материал из волокна <i>Nomex</i> , 167 г/м². Б. 2 слоя флокированной мембраны 5 ( $D=5~\%$ ), 273 г/м². В. 1 слой флокированной мембраны 5 ( $D=5~\%$ ), 138 г/м². Г. 2 слоя флокированной мембраны 5 ( $D=5~\%$ ), 131 г/м² | а) 3 слоя флокированной мембраны 5 и один покровный слой, 475 г/м² ( <i>табл. 5.10</i> ); б) 3 слоя флокированной мембраны 9 и один покровный слой, 340 г/м²                                         |  |  |  |
| Подкладка   | Ткань из волокна <i>Nomex</i> , 120 г/м <sup>2</sup>                                                                                                                                                                                                                                                | Ткань ПЭФ, 70 г/м $^2$                                                                                                                                                                               |  |  |  |

Таблица 6.9. Сравнительные характеристики многослойных теплоизолирующих пакетов для защитной одежды пожарных

| Вид пакета  | Общая поверхностная плотность, г/м <sup>2</sup> | Толщина,<br>мм | Коэффициент теплопровод-<br>ности λ, Вт/м·К | Тепловое сопротивление R, м <sup>2</sup> К/Вт (расчетное значение) |
|-------------|-------------------------------------------------|----------------|---------------------------------------------|--------------------------------------------------------------------|
| Стандартный | 607                                             | 6              | 0.035                                       | 0.17                                                               |
| A           | 739                                             | 9              | 0.033                                       | 0.27                                                               |
| Б           | 713                                             | 9              | 0.031                                       | 0.29                                                               |
| В           | 578                                             | 7              | 0.029                                       | 0.24                                                               |
| Γ           | 551                                             | 8              | 0.030                                       | 0.27                                                               |

Как видим, все пакеты, содержащие ТИФМ, показали более высокое тепловое сопротивление, чем стандартный вариант, меньшую теплопроводность и обладают большей толщиной. Варианты А и Б обладают более высокой поверхностной плотностью в сравнении со стандартным вариантом. Поверхностная плотность вариантов В и Г, несмотря на большую толщину, меньше, чем у стандартного варианта. Поскольку не только толщина и поверхностная плотность, но также паропроницаемость и комфортность в носке

имеют значение для одежных изоляционных материалов, вариант В можно здесь рассматривать как оптимальный. Ясно также, что наибольший теплозащитный эффект дает именно многослойная флокированная структура [190], [191].

На *рис.* 6.13 показаны измеренные значения коэффициентов теплопроводности и плотность многослойных пакетов, применяющихся в одежде для защиты от низких температур, в сравнении с ТИФМ-структурами (по *табл.* 6.4 и 6.5).

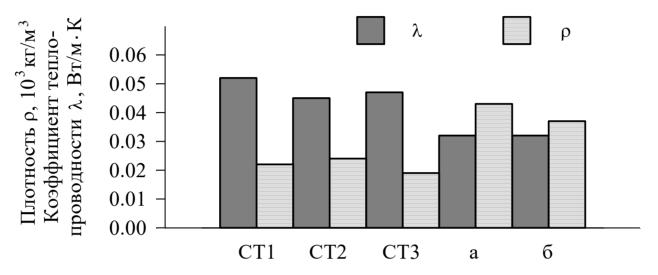



Рис. 6.13 Сравнительные характеристики теплоизоляционных материалов одежды, защищающей от холода

Таблица 6.10. Толщины и расчётные значения теплового сопротивления

#### Поверхностная Тепловое сопротив-Вид Толщина, мм ление R, $M^2 \cdot K/BT$ плотность, $\Gamma/M^2$ пакета 0.35 C1 18 390 C220 475 0.44 C3 585 31 0.66 б, 3 слоя 9 340 0.28 б, 4 слоя 425 0.38 12 б, 5 слоев 15 510 0.47 б, 6 слоев 21 685 0.66

#### пакетов

Понятно, что теплозащитные свойства флокированных структур выше. Сравнение плотности показывает, что флокированные структуры плотнее обычных волокнистых структур. Однако для того, чтобы отдать предпочтение такому теплоизоляционному пакету, необходимо сравнить объемность и толщину выбранных структур. Кроме того, проблема современной одежды

для холодных рабочих мест заключается в том, что используемые изоляционные материалы сминаются после нескольких стирок, и их теплоизолирующая способность падает.

Для выбора необходимой толщины пакета изоляции, обеспечивающей необходимое термосопротивление, измерены толщины и рассчитаны значения теплового сопротивления пакетов, содержащих различное число слоев флокированной полиамидной серебрёной ткани (maбn. 6.10).

Расчёты показывают, что для того, чтобы обеспечить, например,  $R = 0.66 \text{ m}^2 \cdot \text{K/BT}$ , как у пакета C3, необходимо использовать ТИФМ из семи слоев, который имеет толщину на 30 % меньше, но поверхностную плотность на 20 % больше.

Для оценки термического и механического влияний стирок на теплозащитные свойства исследованных пакетов проведены опыты, которые показали, что у ТИФМ после 10 стирок наблюдается снижение толщины максимально на 20 %, в то время как стандартные теплоизоляционные структуры теряют толщину на 30–50 % [192].

На гистограмме (рис. 6.14) показано относительное тепловое сопротивление испытанных материалов по сравнению с исходными пакетами ( $R=100\,\%$ ). Как видим, теплозащитные свойства обычных нетканых структур снижаются после 5 и после 10 стирок, в то время как для флокированных пакетов следующие 5 стирок практически не ухудшают свойств.

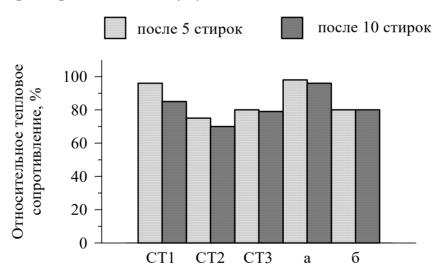
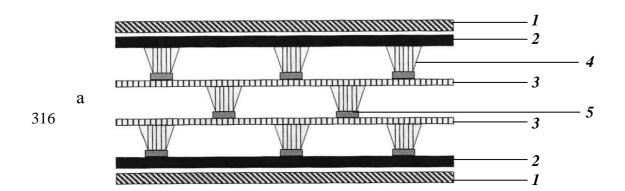
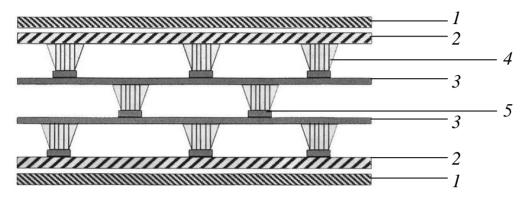



Рис. 6.14. Зависимость относительного теплового сопротивления испытанных материалов по сравнению с исходными пакетами

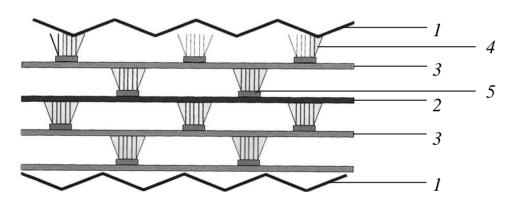
Таким образом, на основе теоретического моделирования разработана новая изоляционная структура. Вследствие расположения мембран перпендикулярно тепловому потоку, снижается передача тепла конвекцией. Использование мембран с высокой степенью отражения (полиэфирная алюминизированная пленка или металлизированные текстильные материалы) приводит к


уменьшению теплопередачи излучением. Вертикальное расположение и минимизация количества волокон в разделительном слое снижает перенос тепла теплопередачей внутри воздушных прослоек. Новизна разработки заключается как в структуре, так и в возможности варьирования материалов для достижения заданных свойств. Минимальная материалоёмкость теплоизоляционного пакета обеспечивает низкую объёмную плотность (10–20 кг/м³).

Для создания температуростойких и негорючих ТИФМ необходимо использовать соответствующие компоненты (мембраны, клеи, ворс). Здесь необходимо упомянуть волокна *Купоl* и стеклянные для изготовления ворса, полотна из арамида, стекловолокна и волокна Nomex, алюминиевую фольгу, негорючие клеи, в том числе неорганической природы. Для изготовления пакетов, используемых в низкотемпературной области, применяли водные акриловые клеи, для термостойких — эпоксидный клей ЭДП (ТУ 07510508.90-94). Для отмывки шаблонов применяли растворитель 649 (ТУ 6-10-1247-77). Для скрепления термостойких пакетов применяли нитки *Nomex 70/3*.


В зависимости от комбинации пакетов необходимо применять различные способы соединения: ниточный, сварной, прессование и завальцовка краев (для модулей с жесткой оболочкой). Для мягких модулей использовали ниточный стачной шов, выполненный на универсальной машине 1022-М двухниточной челночной строчкой с длиной стежка 3 мм.

Модули в мягкой оболочке предлагается использовать в специальной защитной одежде. Оболочкой, защищающей сам теплоизоляционный пакет, может служить ткань верха, выбранная для данного вида специальной одежды [193]. Наружные слои теплоизоляционного пакета должны быть металлизированы, металлизация внутренних слоев не так важна.


Для уменьшения воздухопроницаемости и теплопередачи конвекцией можно заменить наружные слои нетканого полотна металлизированной тканью или сдублированным с фольгой нетканым материалом. В одежде, защищающей от тепла и огня, необходимо использовать термостойкие или негорючие мембраны, ворс и клей. На *рис.* 6.15 показаны варианты модулей ТИФМ различного назначения [194].



– ткань верха; 2 – металлизированный ПП нетканый материал; 3 – ПП нетканый материал; 4 – ПА ворс; 5 – клей



— термостойкая ткань верха; 2 — металлизированный арамидный нетканый материал; 3 — арамидный нетканый материал неметаллизированный; 4 — ворс из волокон угольных или Kynol; 5 — клей



– алюминиевая фольга (50 мкм); 2 – алюминиевая фольга (10 мкм); 3 – нетканое стеклополотно; 4 – ворс из волокон угольных, стеклянных или Kynol; 5 – клей

Рис. 6.15. Варианты предлагаемых структур теплозащитных модулей из ТИФМ: а — для одежды, защищающей от холода; б — для одежды, защищающей от тепла; в — огнестойкого

Для изготовления негорючих жестких модулей в качестве наружной оболочки можно использовать гофрированную алюминиевую фольгу толщиной 50 мкм, в качестве основы слоёв — тонкую фольгу или металлизированные нетканые полотна из арамида и стекловолокна. Применение чрезвычайно легкой и гибкой пленочной флокированной изоляции перспективно, напри-

мер, в строительстве воздушных шаров (монгольфьеров), особенно, предназначенных для использования водяного пара (с температурой 100–160 °C), а не горячего воздуха. В этом случае применение ТИФМ способно уменьшить или исключить образование конденсата. Особенно интересно здесь использование полых волокон.

# 6.5. Разработка технических требований на опытно-промышленное оборудование для многоцветного флокирования

### 6.5.1. Разработка дозирующей системы для флокирования в стационарном режиме

При производстве штучных изделий с многоцветным флокированием нанесение ворса осуществляется через сетчатые шаблоны. Для достижения высокой производительности оборудования и качественной печати ворсом важно правильно выбрать систему подачи ворса в зону флокирования.

С этой целью проведены исследования бункеров для подачи ворса различных конструкций: вибробункеров, бункеров с протирающими сетками и щёточной подачей. Проектирование бункеров базировалось на данных о кинетике процесса нанесения ворса. При этом в качестве критерия оптимальности флокирования было выбрано время достижения максимальной плотности нанесения ворса. Рациональная конструкция должна обеспечивать:

- равномерную подачу ворса во времени и по площади бункера;
- достаточно длительное время флокирования без дозагрузки ворса;
- интенсивную подачу ворса для высокой плотности его нанесения и высокой скорости флокирования;
  - удобство обслуживания и надежность работы флокатора.

При отработке технологических режимов на лабораторной установке УМФ-2/1 выяснено, что обычно использовавшийся вибродозатор-сито не обеспечивает необходимую равномерность подачи во времени. При вибрационной подаче ворс слеживается, особенно при большой загрузке. Для достижения равномерной подачи ворса во времени и достаточной плотности его нанесения на изделии исследованы различные виды дозирующих систем для ворса: с параллельными протирающими сетками (рис. 6.16), торцевой протирающей щеткой (рис. 6.17), с пластинчатым дозатором, представляющим собой рамку, на которой закреплены параллельные диэлектрические пластины, установленные перпендикулярно высоковольтному сетчатому электроду [195].

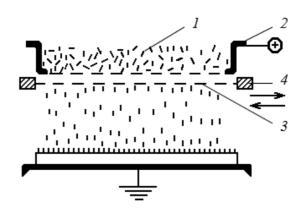



Рис. 6.16. Схема дозатора с параллельными сетками

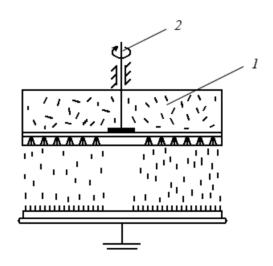



Рис. 6.17. Схема цилиндрического флокатора с вращающейся щеткой

В бункере с параллельными сетками ворс I, заряжаясь на сетке 2, являющейся высоковольтным электродом, просыпается через диэлектрическую сетку 3, натянутую на легкую раму 4, за счет вибрации последней в горизонтальной плоскости (рис. 6.18). Была определена подача ворса в отсутствие электрического поля, а затем в обычных условиях флокирования при напряжении электрического поля  $U=45~{\rm kB}$ . Исследованы зависимости величины подачи ворса от времени при различных плотностях обеих сеток, при разной частоте вибрации нижней (лавсановой) сетки и при различной начальной величине загрузки бункера ворсом. В исследованиях использовали вискозный ворс длиной  $0.5~{\rm mm}$ , диаметром  $0.02~{\rm mm}$ , имеющий электросопротивление  $10^7~{\rm Cm}$ .

Исследования показали, что ни один из вариантов по плотности сетки, частоте колебаний нижней сетки, величине загрузки не позволил достичь равномерности подачи ворса во времени. Это демонстрирует, например, *puc*. 6.18. Даже при работе в присутствии электрического поля, которое оказывает выравнивающее действие за счет перезарядок ворса и движения его между

электродами, стабильной подачи не наблюдалось. В цилиндрическом дозаторе с четырехлопастной вращающейся щеткой ворс I протирается через сетку, являющуюся высоковольтным электродом, с помощью четырех щеток, закрепленных на вращающемся валу 2.

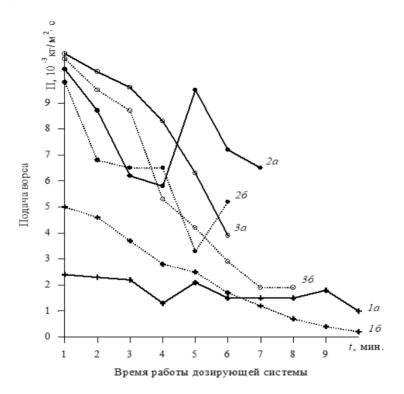
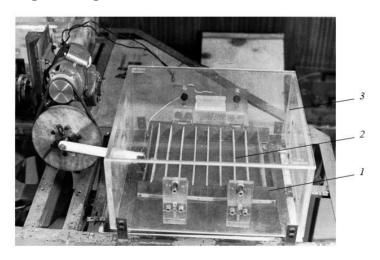




Рис. 6.18. Подача ворса дозирующей системой с параллельными протирающими сетками при различной начальной загрузке: 1-150 г; 2-200 г; 3-300 г; a-6ез поля;  $\delta-8$  поле

В пластинчатом дозаторе (puc.~6.19) ворс просыпается через сетку, являющуюся высоковольтным электродом, за счет вибрации бункера и одновременного протирания ребрами пластин 2, которые на рамке 1 жестко закреплены с корпусом флокатора 3.



#### Рис. 6.19. Пластинчатый вибрационный дозатор

В исследованиях щеточного и пластинчатого дозаторов использовался полиамидный ворс длиной 1.2 мм с диаметром волокон 0.02 мм. Результаты исследований изменения величины подачи ворса во времени приведены на рис. 6.20.

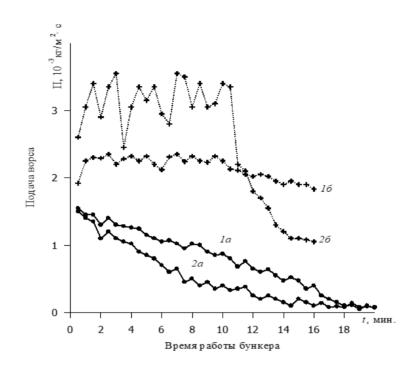
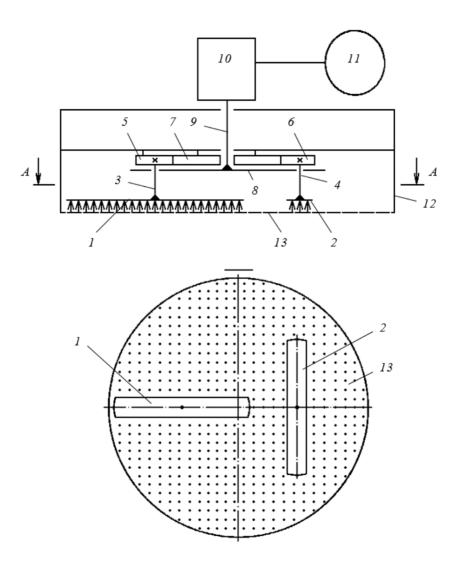



Рис. 6.20. Кинетика подачи ворса пластинчатым дозатором 1 и цилиндрическим дозатором 2 с торцевой щеткой (a- без поля;  $\delta-$  в поле)


Действие электрического поля в обоих случаях стабилизирует подачу, она колеблется в определенных пределах и в целом становится более равномерной во времени. В процессе исследований распределения подачи ворса по площади была выявлена ее неравномерность у щеточного дозатора, что является следствием различной линейной скорости участков щетки (с увеличением радиуса линейная скорость движения увеличивается).

В центре флокированного участка наблюдалась «мертвая зона» — пятно с недопустимо низкой плотностью флокирования. В процессе работы возникла необходимость увеличения мощности двигателя, приводящего в движение вал со щетками, так как максимально возможная загрузка, составляющая 1/8 часть объема бункера (50 г), обеспечивала работу флокатора без дозагрузки только в течение 12 мин. При увеличении массы ворса в бункере и давлении щеток дозатора на его дно металлическая сетка вытягивалась, поэтому решено усовершенствовать дозатор. Для этого использовали в качестве высоковольтного электрода алюминиевую перфорированную пластину толщиной 1.5

мм. Для увеличения равномерности подачи по площади была разработана система с двумя вращающимися щетками [196] (*puc. 6.21*).

Торцевые вращающиеся щетки 1 и 2, развернутые друг относительно друга в горизонтальной плоскости под углом  $90^{\circ}$ , имеют возможность вращаться вокруг осей ведомых валов 3 и 4 и поступательно двигаться по окружности за счет механизма планетарного перемещения. Он выполнен в виде зубчатых колес 5 и 6, смонтированных с возможностью их перемещения вокруг зубчатого колеса 7, неподвижно установленного в корпусе 12 флокатора. Валы 3 и 4 связаны через водило 8 с ведущим валом 9, редуктором 10 и двигателем привода 11. Электрод 13 имеет отверстия, расположенные равномерно по всей площади.

Для исследований использован вискозный ворс линейной плотностью 0.33 текс, длиной 0.3 мм (с разделяемостью 74 %) и 0.6 мм (с разделяемостью 31 %). Флокирование осуществляли при напряженности электрического поля  $4\cdot10^7$  В/м. Равномерность подачи ворса по площади флокирования оценивали по топографии осаждения волокон из бункера без электрического поля.



#### Рис. 6.21. Схема флокатора с двумя вращающимися щетками

На площади круглого перфорированного электрода был выделен вписанный квадрат размером  $18 \times 18$  см<sup>2</sup>, на котором в свою очередь выделили 36 одинаковых ячеек. Измерение массы ворса в каждой ячейке проведено после полного его высыпания из бункера (рис. 6.22). Как показывают полученные данные, для рассматриваемой конструкции бункера имеется определенная неравномерность распределения ворса, а именно меньшая подача в центре и по периметру электрода. Для устранения неравномерности подачи целесообразно в центре и по периферии электрода соответственно увеличить число отверстий или их диаметр. В дальнейшем предложено зенковать отверстия перфорации в пластине-электроде, так как воронкообразные отверстия повышают вероятность и облегчают попадание волокон в них и способствуют увеличению подачи (рис. 6.23).

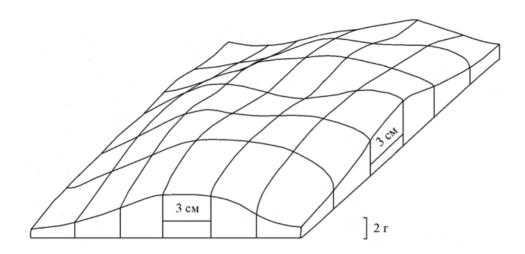



Рис. 6.22. Диаграмма распределения подачи ворса по площади цилиндрического флокатора

Вертикальные стенки цилиндрической части отверстий обеспечивают уменьшение угла между осью волокон и вертикалью, что улучшает предварительную ориентацию волокон при их переходе из бункера в электрическое поле. Геометрические параметры отверстий (наружный диаметр и высоту усеченного конуса, диаметр и высоту цилиндрической части, шаг между отверстиями) подбирают с учетом длины и диаметра используемого ворса. Входной диаметр усеченного конуса должен быть больше длины волокон используемого ворса.

Изучение зависимости величины подачи ворса от времени флокирования в электрическом поле (рис. 6.24) показали, что время истощения ворса в бункере составляет порядка 14 мин. Первые три четверти времени флокирования подача сохраняется примерно одинаковой, после чего наступает замет-

ное ее снижение. Именно в этот момент было отмечено появление в центре образцов пятна с пониженной плотностью нанесения ворса.

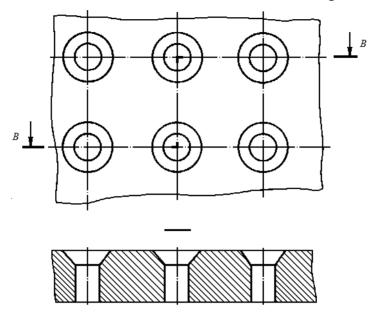



Рис. 6.23. Схема перфорации пластины – электрода

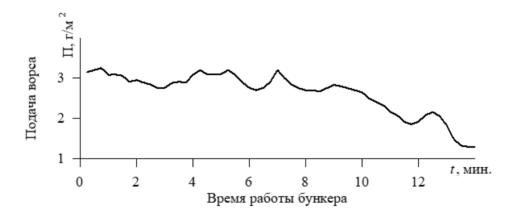



Рис. 6.24. Кинетика подачи ворса в отсутствие электрического поля

Исследование кинетики достижения максимальной плотности флокирования было проведено для пяти вариантов, соответствующих разной степени истощения ворса в бункере ( $puc.\ 6.25$ ).

Характер нарастания плотности флокирования во времени представляет собой асимптотическое приближение по времени массы ворса на образце (плотности флокирования) к своему предельному значению, одинаковому для всех вариантов. Однако время достижения максимальной плотности существенно зависит от наполненности бункера. Так, для крайних вариантов 1 и 5 достижимая плотность при одном и том же времени флокирования 40 с отличается вдвое. На рис. 6.26 показано, что время достижения максимальной плотности ворса практически линейно растет по мере истощения ворса в бун-

кере [195]. Такое явление неизбежно приведет к различию качества образцов в период между дозагрузками ворса в бункер. Устранение этого явления может осуществляться несколькими путями: созданием устройства с изменяющейся подачей ворса, компенсирующей его истощение в бункере или автоматизацией процесса дозагрузки бункера, вплоть до создания непрерывной загрузки. Более простым решением является увеличение диаметра бункера и соответственно количества загружаемого ворса при сохранении необходимой площади перфорации.

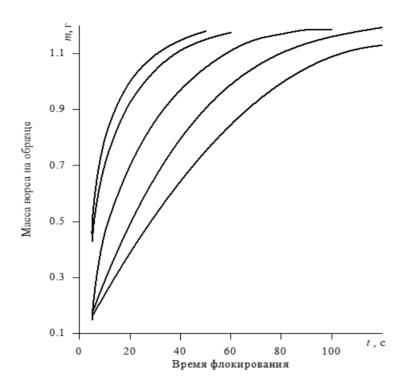
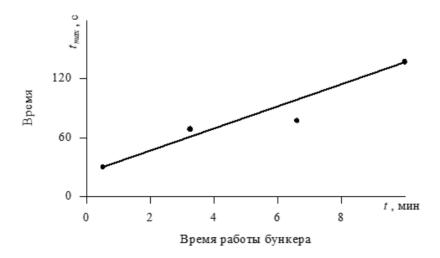




Рис. 6.25. Кинетика достижения максимальной плотности нанесения ворса (кривые слева направо получены по мере истощения ворса в бункере)



# Рис. 6.26. Зависимость времени достижения максимальной плотности нанесения ворса от времени работы бункера флокатора

Особенностью печати ворсом является то, что флокирование ведется через сетчатые шаблоны, и ворс попадает не только на площадь рисунка, но и на всю площадь под флокатором. Поэтому, чтобы ворс не накапливался на шаблоне, необходима перезарядка ворса на нём, то есть его рекуперация и возможность многократного участия в процессе флокирования. На рекуперацию ворса оказывают влияние, главным образом, его электропроводимость и напряженность электрического поля, поскольку силы электрического взаимодействия должны быть достаточными для транспортировки ворсинок к верхнему высоковольтному электроду. Эксперименты, проведенные с ворсом различной электропроводимости, показали, что при флокировании через шаблон напряженность поля должна быть не ниже  $4.3\cdot10^5$  В/м (рис. 6.27) [26]. Нижний предел рабочей напряженности должен выбираться с учетом свойств ворса. Верхний предел ограничен изоляцией и наступлением электрических пробоев в межэлектродном пространстве.

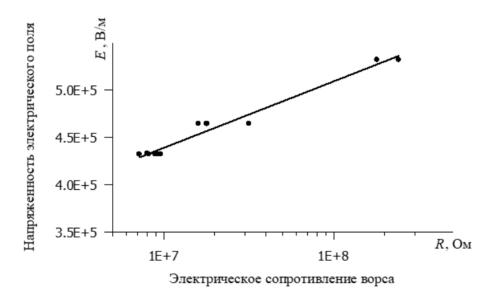



Рис. 6.27. Зависимость напряженности, при которой начинаются перезарядки ворса на шаблоне, от электросопротивления ворса

Важным вопросом при многоцветном флокировании является достижение четкого разграничения цветов в рисунке. Этого трудно добиться, учитывая, что при флокировании через сетчатый ограничительный шаблон нельзя получить максимальной плотности нанесения ворса. Исследования, проведенные автором на лабораторной установке УМФ–2/1, позволили сделать вывод, что четкость можно гарантировать только в случае отключения высокого напряжения между циклами флокирования, когда происходит перемещение печатного стола от одного флокатора к другому. Иначе ворсинки, движущие-

ся в электрическом поле, «размывают» первоначально полученный отпечаток, так как для поворота столы опускаются, и расстояние между флокируемой основой и шаблоном для ворса увеличивается сверх допустимых пределов. В дальнейшем эта идея использовалась при проектировании системы управления опытно-промышленными установками. Последовательность команд такова: отключение высокого напряжения  $\rightarrow$  отключение подачи ворса  $\rightarrow$  опускание столов  $\rightarrow$  поворот  $\rightarrow$  подъем столов  $\rightarrow$  включение высокого напряжения  $\rightarrow$  включение подачи ворса  $\rightarrow$  флокирование и далее по циклу.

Исследования по выбору технологических параметров одноцветного и многоцветного локального флокирования на лабораторной установке позволили разработать технические требования на опытно-промышленное оборудование. На кафедре технологии нетканых материалов Ленинградского института текстильной и легкой промышленности им. С. М. Кирова при участии автора, совместно с Ленинградскими СКБ трикотажной и швейной промышленности в 1982—1985 гг. разработано и изготовлено оборудование для многоцветного флокирования, включающее:

- установку для нанесения флокированных рисунков ОТ-577;
- малогабаритную сушильную камеру Л208-84БУ;
- установку для аэромеханической очистки флокированных рисунков OT-578.

Описания и технические характеристики этого оборудования приведены в приложении M.

В 1986—1989 гг. работы продолжены совместно с Ленинградским СКБ текстильной промышленности. Разработан и изготовлен комплекс оборудования для флокирования, в котором использованы усовершенствованные узлы печати и флокирования, увеличен размер печатного рисунка по сравнению с предыдущей модификацией, усовершенствованы механизмы подъема / спуска, поворота и фиксации поворотной платформы.

Комплекс оборудования состоит из ротационной установки для производства изделий с многоцветным флокированным рисунком УНФ-1, камеры для сушки и термофиксации изделий и устройства для очистки их от не закрепившегося ворса (см. *приложение H*).

# 6.5.2. Разработка мини-установок для печати ворсом штучных изделий

На небольших предприятиях, стремящихся при минимуме затрат быстро обновлять ассортимент продукции и имеющих относительно небольшой объем производства, целесообразно использовать более дешёвые устройства для флокирования, занимающие меньшую площадь и менее энергоемкие. Для организации участка электрофлокирования необходима в этом случае производственная площадь около  $30 \, \text{m}^2$ .

При разработке конструкций таких мини-установок упрощения и удешевления можно достигнуть, если отказаться от автоматического нанесения клея и автоматического межоперационного поворота платформы, а также от устройства юстировки шаблонов для ворса. Тогда мы получаем устройство для одноцветной печати ворсом, которое может быть использовано также для печатания красками.

Проф. Е. Н. Бершевым и автором была разработана автоматизированная мини-установка для одноцветного флокирования и сушки текстильных изделий УФС–1. Установка предназначена для нанесения одноцветных рисунков на текстильную плоскую основу методом электофлокирования. На установке осуществляют клеепечать через сетчатый шаблон вручную, флокирование и сушку в автоматическом режиме. Установка может быть использована также для печатания красками или комбинированной печати красками и ворсом.

Для рационального использования такой установки необходимо определить параметры клеенанесения, флокирования и сушки в установившемся производственном режиме, оценить свойства флокированной поверхности. Оценка свойств важна потому, что в данном случае предусматривается только инфракрасная сушка, без предварительной или заключительной конвективной сушки. Критерием оценки качества сушки служила износостойкость флокированной поверхности, которую определяли количеством циклов истирания на приборе ИТ-3М. Использовали вискозный ворс с длиной резки 0.6 мм линейной плотности 0.33 текс. После изготовления образцам давали пролежку при комнатной температуре от одних до восьми суток и затем определяли износостойкость. Результаты исследований (рис. 6.28) показали, что с течением времени износостойкость материалов увеличивается как при традиционной конвективной сушке с последующей термофиксацией (контрольный образец), так и при ИК-сушке. При этом установлено, что воспроизводимые достоверные результаты можно получить при пролежке образцов не менее семи суток.

Наибольшая износостойкость флокированной поверхности достигается при сушке в течение  $20 \div 60$  с. Превышение времени облучения приводит к снижению износостойкости, что, вероятно, является следствием термодеструкции полимерной пленки.

Приведенные данные свидетельствуют о том, что при ИК-сушке флокированных материалов достигается 15–30-кратное по сравнению с конвективной сушкой сокращение времени сушки при сохранении эксплуатационных свойств флокированного материала.

Для оценки стабильности работы установки УФС-1 в производственных условиях произведен эксперимент, в ходе которого определяли следующие показатели: расход клея, расход ворса, скорость влагоиспарения, а также стойкость к истиранию флокированной поверхности в сухом и мокром видах. Испытания стойкости к истиранию проводили через две недели после нара-

ботки образцов. Поскольку в установившемся режиме работы установки время сушки изменяется в сравнении с сушкой первых изделий, последовательно наработаны 65 флокированных образцов на тканевой основе. Определяли массу ткани ( $m_1$ , г), массу ткани с клеем ( $m_2$ , г), массу ткани с клеем и ворсом до сушки ( $m_3$ , г) и массу ткани с клеем и ворсом после сушки ( $m_4$ , г). В работе была использована хлопчатобумажная ткань, воднодисперсионный акриловый клей, вискозный ворс длиной 0.5 мм. Флокирование проводили при постоянном режиме: время флокирования — 25 с, напряженность электрического поля —  $4.0 \cdot 10^5$  В/м.

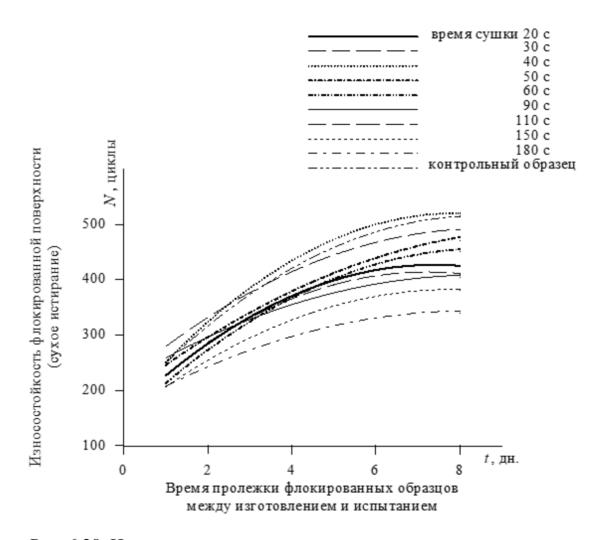



Рис. 6.28. Нарастание прочности закрепления ворса в течение недели после изготовления флокированных образцов

Время сушки  $t_{\rm C}$  постепенно снизили от 100 с (первый образец) до 20 с (десятый образец) и в дальнейшем не изменяли. Зная площадь флокирования (50 см²), рассчитывали расход клея ( $\Pi_1$ , г/м²), расход ворса ( $\Pi_2$ , г/м²) и скорость влагоиспарения ( $\Pi_3$ , г/м²·с) по следующим формулам:

$$\Pi_{1} = \frac{(m_{2} - m_{1}) \cdot 10^{4}}{50} = 200 \cdot (m_{2} - m_{1}); \tag{6.1}$$

$$\Pi_2 = 200 \cdot (m_3 - m_2);$$
 (6.2)

$$\Pi_3 = \frac{200 \cdot (m_3 - m_4)}{t_C}.\tag{6.3}$$

Одновременно данные исследования позволили установить, как влияет длительное время работы сушилки на скорость пленкообразования при нанесении клея, т. е. на забиваемость сетчатого шаблона. По внешнему виду отпечатка устанавливали необходимость промывки. Промывали шаблон перед нанесением клея на образцы с порядковыми номерами 8, 12, 18, 25, 30, 36, 40, 45, 49, 53 и 59, т. е. в среднем через 5 отпечатков (рис. 6.29).

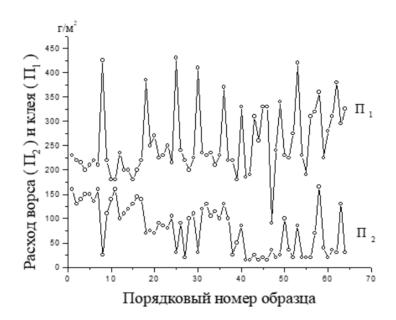



Рис. 6.29. Изменение расхода ворса и клея в процессе работы установки УФС–1

График показывает, что расход клея при печати через промытый шаблон возрастает на 30÷100 % по сравнению со средним уровнем, который составляет 200–250 г/м². Положительным пикам на кривой расхода клея соответствуют, как правило, отрицательные пики на кривой расхода ворса. Таким образом, необходимость частых промывок шаблона приводит к неравномерному нанесению клея и ворса и снижению качества флокированной поверхности. Этот недостаток был впоследствии устранен путем модификации клея (см. разд. 3.3). Расход ворса более чем вдвое снижается после флокирования 35-го образца (что соответствует непрерывному флокированию в течение 15 мин).

Результаты расчетов скорости испарения воды и испытаний стойкости к истиранию приведены в *табл. 6.11*. Данные таблицы показывают, что сущест-

венных изменений скорости сушки можно ожидать только в первые 10–15 мин работы сушилки, а затем время сушки стабильно. Прочность закрепления ворса увеличивается с течением времени работы сушилки, что является свидетельством лучшего сшивания клеевой композиции.

Таблица 6.11. Стойкость к истиранию ворсовой поверхности образцов флокированной ткани

| Показатель                             |     | Номера значений для образцов |     |     |     |     |     |     |     |      |      |     |     |
|----------------------------------------|-----|------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|-----|-----|
| Показатель                             | 1   | 2                            | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10   | 11   | 12  | 13  |
| Скорость сушки, $\Gamma/M^2$ ·с        | 0.7 | 1.0                          | 1.0 | 1.1 | 1.4 | 1.7 | 2.2 | 8.7 | 4.2 | 11.2 | 10.8 | 4.6 | 2.6 |
| Стойкость к истиранию (сухому), циклы  | 120 | 220                          | 110 | 110 | 110 | 160 | 100 | 120 | 90  | 90   | 80   | 100 | 90  |
| Стойкость к истиранию (мокрому), циклы | 11  | 50                           | 100 | 90  | 100 | 100 | 100 | 70  | 70  | 70   | 80   | 90  | 80  |

## Продолжение табл. 6.11

|     | Номера значений для образцов |     |     |      |     |     |     |     |     |     |      |     |      |     |      |     |     |     |     |
|-----|------------------------------|-----|-----|------|-----|-----|-----|-----|-----|-----|------|-----|------|-----|------|-----|-----|-----|-----|
| 14  | 15                           | 16  | 17  | 18   | 19  | 20  | 21  | 22  | 23  | 24  | 25   | 26  | 27   | 28  | 29   | 30  | 31  | 32  | 33  |
| 2.6 | 2.8                          | 4.0 | 2.6 | 14.6 | 3.4 | 3.6 | -   | 3.6 | 3.2 | 3.2 | 10.0 | 5.0 | 10.4 | 8.0 | 10.0 | 8.3 | 3.6 | 4.0 | 9.6 |
| 100 | 100                          | 90  | 100 | 60   | 130 | 130 | 170 | 170 | 170 | 180 | 120  | 110 | 100  | 100 | 110  | 110 | 100 | 110 | 120 |
| 80  | 70                           | 80  | 100 | 50   | 70  | 70  | 80  | 100 | 90  | 100 | 80   | 90  | 90   | 90  | 90   | 90  | 90  | 100 | 100 |

### Окончание табл. 6.11

|     | Номера значений для образцов |     |      |  |      |     |     |     |     |     |     |     |     |     |     |      |     |     |
|-----|------------------------------|-----|------|--|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|
| 34  | 35                           | 36  | 37   |  | 52   | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  | 61  | 62  | 63   | 64  | 65  |
| 3.4 | 5.0                          | 5.0 | 10.2 |  | 10.4 | 6.0 | 4.6 | 3.2 | 3.4 | 3.4 | 3.2 | 3.4 | 3.8 | 3.4 | 3.8 | 12.4 | 4.6 | 6.0 |
| 120 | 120                          | 130 | 130  |  | 250  | 250 | 260 | 300 | 320 | 340 | 350 | 390 | 390 | 360 | 360 | 390  | 350 | 360 |
| 100 | 80                           | 90  | 90   |  | 90   | 90  | 90  | 100 | 100 | 90  | 100 | 100 | 110 | 120 | 130 | 140  | 150 | 160 |

Результаты исследований показали, что конструкция установки обеспечивает достаточно стабильную ее работу в течение 3,5 часов (примерно половина рабочей смены).

Для устройства УФС–1 разработан щёточный дозатор, имеющий прямоугольный электрод. Конструкция дозатора ворса обеспечивает:

- равномерную подачу ворса во времени и по площади бункера;
- достаточное время флокирования без дозагрузки бункера;
- подачу ворса, обеспечивающую высокую плотность его нанесения и высокую скорость флокирования;
  - удобство обслуживания и надежность работы флокатора.

Для исследований подачи ворса этим дозатором использован полиамидный ворс длиной резки  $0.6\,\mathrm{mm}$  и разделяемостью  $74\,\%$ . Экспериментально получена топография осаждения волокон из бункера без электрического поля и под действием поля. Площадь прямоугольного электрода разбили на  $20\,\mathrm{одинаковыx}$  прямоугольников, под которыми устанавливали одинаковые ячейки размером  $10\times10\,\mathrm{cm}^2$ . После полного высыпания ворса из бункера определяли массу ворса в каждой ячейке. Установлено, что электрическое поле оказывает выравнивающее действие. Расхождения в массе ворса между отдельными ячейками в электрическом поле составляют не более  $2,5\,\mathrm{pa3}$ , в то время как без электрического поля отмечено расхождение более чем в  $4\,\mathrm{pa3a}$ . Необходимо отметить, что для флокирования через перфорированный электрод необходим ворс с высокой разделяемостью, иначе он образует комки, запрессовывается между щетками и забивает перфорацию.

Исследования показали, что подача ворса по площади во всех случаях достаточно равномерна. Изучение зависимости величины подачи от времени работы бункера при максимальной загрузке показало, что время истощения ворса в бункере составляет порядка 1 ч 20 мин (рис. 6.30). Первые 10 минут подача ворса наибольшая, после этого наступает ее заметное снижение. Электрическое поле оказывает выравнивающее действие, равномерность подачи ворса во времени увеличивается.

Время истощения ворса в бункере при флокировании через сетчатый электрод ниже, чем при использовании перфорированного, но производительность первого выше. Исследование кинетики подачи ворса через перфорированный и сетчатый электроды показало, что с точки зрения величины подачи предпочтительнее использовать сетчатый электрод, однако сетка со временем вытягивается и провисает в средней части, что приводит к неравномерной подаче ворса по площади.

В дальнейшем бункер с перфорированным электродом и щеточным дозатором усовершенствован диэлектрическими вкладышами, которые исключали скапливание ворса в углах бункера, под рамкой, на которой крепятся щетки.

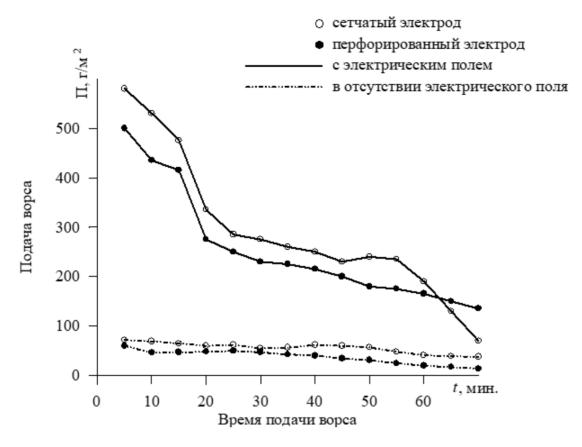



Рис. 6.30. Кинетика подачи ворса при максимальной загрузке 1,5 кг с электрическим полем и в отсутствии электрического поля

Проведенные исследования позволили установить основные технологические параметры работы на установке для одноцветного флокирования и сушки штучных плоских изделий и создать на их основе схему автоматизированного управления ее работой. Схема, основные технические данные и описание установки представлены в *приложении*  $\Pi$ .

На основе флокатора, опробованного на установке УФС-1, автором разработана настольная мини-установка, предназначенная для производства флокированной продукции на бумажной основе: открыток, визиток, календарей, адресов и др. Схема установки и её описание приведены в *приложении P*.

#### ЗАКЛЮЧЕНИЕ

Технология электрофлокирования, ввиду своей универсальности, может применяться в самых различных сферах материального производства. Однако для успешного её использования нужно учитывать много факторов. Локальное нанесение ворса — печатание рисунка, орнамента с декоративной целью или для создания функционального ворсового слоя — открывает широкий спектр направлений электростатического флокирования.

В данной работе содержатся теоретические подходы для прогнозирования свойств используемого сырья и готовых материалов, а также практические решения для организации технологических процессов.

Проведенные автором исследования коснулись совершенствования основных технологических операций технологии: нанесения клея, собственно флокирования и сушки. На основе исследований физико-химических, коллоидных и реологических свойств воднодисперсионных клеевых композиций разработаны несколько рецептур клеев для печати на текстиле и бумаге из компонентов, производимых российской промышленностью. Среди них стоит отметить водостойкие акриловые клеи с эпоксидным отвердителем, в том числе, с улучшенными печатно-техническими свойствами, вспененный клей, композиции на основе самосшивающихся дисперсий. Впервые подробно описаны аспекты технологии получения печатного рисунка способом термопереноса ворса, составы временного и основного клеев, требования к термопластичным порошкам.

Уделено внимание теоретическим основам получения многоцветных флокированных рисунков, в том числе с полутоновыми эффектами как при прямом флокировании, так и при использовании способа термопереноса ворса. Приведены требования, касающиеся применяемых рисунков, параметров тканей для изготовления шаблонов для клея и ворса, оценена разрешающая способность печати ворсом.

Проведено математическое моделирование жёсткостных характеристик флокированных тканей в зависимости от доли площади материала, заполненной флокированным рисунком, а также от толщины клеевого слоя.

Важной частью работы является моделирование теплоизоляционных свойств флокированного материала, позволившее разработать высокоэффективную многослойную теплоизоляцию из локально флокированных полимерных плёнок, тонких нетканых полотен, тканей или фольги.

Большое внимание уделено исследованию потребительских свойств материалов с локально нанесенным ворсовым слоем.

Описано специализированное оборудование, разработанное в Ленинградском институте текстильной и лёгкой промышленности им. С. М. Кирова, ныне СПбГУПТД и изготовленное на российских предприятиях на основе исследований автора.

#### Список принятых сокращений

БР – биоразлагаемость

БЭН – бутираль эпоксидный новолачный

ВПЭ – волокно полиэфирное

ГЛБ – гидрофильно-липофильный баланс

ГОСТ Р – государственный стандарт Российской Федереции

ДТА (DTA) – дифференциально-термический анализ

ИК – инфракрасный

ИКС – инфракрасная спектроскопия

КМК – карбоксиметилкрахмал

ККМ – критическая концентрация мицеллообразования

КПАВ – катионактивное поверхностноактивное вещество

ЛАТР – лабораторный автотрансформатор

MKO – Международная комиссия по освещению. Называется также CIE – Comission Internationale de l'eclarage

МКЭ – метод конечных элементов

м.м. – молекулярная масса

НПАВ – неионогенное поверхностноактивное вещество

ОСТ – отраслевой стандарт

ПА – полиамид

ПАА – полиакриламид

ПВА – поливинилацетат

ПВБ – поливинилбутираль

ПВС – поливиниловый спирт

 $\Pi BX$  — поливинилхлорид

ПДК – предельно-допустимая концентрация

ПЭНД – полиэтилен низкого давления

ССБТ – система стандартов безопасности труда

ТГ – термогравиметрия

ТГА (TGA) – термогравиметрический анализ

Теория ДЛФО – теория Дерягига, Ландау, Фервея, Овербека

ТЗМК – теплозащитный материал из штапелированного кварцевого волок-

на

ТИФМ – теплоизоляционный флокированный материал

ТУ – технические условия

УЗ – ультразвуковой

УМФ – установка для многоцветного флокирования

УФС – установка для флокирования и сушки

DIN – нормы Немецкого института стандартизации (ФРГ)

DIN EN – европейский стандарт, вошедший в национальную систему норм технического регулирования Германии

DIN EN ISO — стандарт, принятый Международной организацией по стандартизации (ISO), который включен в перечень европейских стандартов (EN) и таким образом вошел в национальную систему норм технического регулирования Германии (DIN)

% мас. – процент массы

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бершев Е. Н. Электростатическое флокирование. М.: ЦНИИТЭИ-легпром, 1970.-56 с.
- 2. Бершев Е. Н. Электрофлокирование: нанесение ворса в электрических полях. М., 1977. 232 с.
  - 3. Inserentenverzeichnis // Flock. -2004. No. 100. S. 42.
- 4. Заявка Японии № 63-27468. Опубликовано 03.06.88. Мицубиси дзидосо когё К. К., Намита нурэсу когё К. К. Способ формирования рельефного рисунка на ворсовой ткани.
- 5. Заявка Японии № 63-25108. Опубликовано 24.05.88. Тэйдзин К. К. Способ обработки ворсовой ткани для флокирования узора.
- 6. Бершев Е. Н. Физические основы технологии электрофлокирования. Л.: Изд-во ЛГУ, 1984. 232 с.
- 7. Информационный проспект Союза промышленности флокирования, 2004.
- 8. Berschev E. N. Elecktrostatisches Befocken / E. N. Berschev, U. Liebscher. VEB Vachbuchverlag. Leipzig, 1983. 328 S.
- 9. Нетканые текстильные полотна: справочник / сост. Е. Н. Бершев и др. М.: Легпромбытиздат, 1987. 400 с.
- 10. А. с. СССР № 1106861. Состав для обработки синтетического ворса. Опубл. 07.08.1984, бюл. 29. В. В. Дмитриев, Е. Н. Бершев, А. А. Хархаров и др.
- 11. Дмитриев В. В. Исследования в области подготовки ворса из химических волокон для получения электрофлокированных материалов: автореф. дис....канд. техн. наук. ЛИТЛП им. С. М. Кирова. Л., 1976. 26 с.
- 12. Дмитриев В. В. Химическая подготовка ворса в электрофлокировании. Л.: Изд-во ЛГУ, 1986. 216 с.
- 13. Гольдин И. А. Исследования в области создания клеевых композиций для производства электрофлокированных нетканых материалов: автореф. дис. ... канд. техн. наук. ЛИТЛП им. С. М. Кирова. Л., 1982.
- 14. Демидова Н. В. Исследования клеевых композиций на основе поливинилхлорида для электрофлокированных нетканых материалов: автореф. дис....канд. техн. наук. ЛИТЛП им. С.М. Кирова. Л., 1975.
  - 15. Фрейдин А. С. Полимерные водные клеи. М., Химия, 1985. 143 с.
- 16. А. с. СССР № 1010099, МКИ С09I 3/14. Клеевая композиция. В.И. Кобякова и др. Опубл. 07.04.1983, бюл. № 13.
  - 17. Марек О., Томка М. Акриловые полимеры. М., 1966.
- 18. Mechta Shirish. Aqueaes based Sintetic Thicheners // Man Made Textil India. 1981. Vol. 24.  $N_2$  9. P. 488–489.
- 19. Глубиш П. А. Применение полимеров акриловой кислоты и ее про-изводных в текстильной и легкой промышленности. М., 1975.

- 20. Сенахов А. В. Пути повышения качества напечатанных текстильных материалов // ЖВХО им. Д. И. Менделеева. -1981. Т. 26. № 4. С. 390– 396.
- 21. Reactive monomers from Allied Colloids // Text. Inst. And Ind. -1980. Vol. 18. Nol. 12. P. 326.
  - 22. Патент США № 324945, МКИ В44С 1/08.
- 23. А. с. СССР № 979479, МКИ С09I 3/14, С08L 33/06. Клеевая композиция для приклеивания ворса в электростатическом поле / Е. В. Исаакова и др. Опубл. 07.12.1982, бюл. 45.
- 24. А. с. СССР № 702052, МКИ С09I 3/14, D04H 11/00. Клеевая композиция для приклеивания ворса в электростатическом поле / Т. А. Конькова и др. Опубл. 05.12.1979, бюл. 45.
- 25. A. c. СССР № 827515, МКU С09I 3/14, С08L 33/04. Клеевая композиция для электрофлокирования / Е. Н. Бершев и др. Опубл. 07.05.81.
- 26. Лобова Л. В. Исследование технологии производства нетканых электрофлокированных материалов с нанесением ворса узорами: дис. ..... канд. техн. наук. ЛИТЛП им. С. М. Кирова. Л., 1983.
- 27. Лобова Л. В. Исследование факторов устойчивости и структурирования воднодисперсионных клеев для электрофлокирования / Л. В. Лобова, Н. И. Иванова. В сб. II Междунар. флок-конференции. СПб., 6—7 мая 1996.
- 28. А. с. СССР № 627147, МКU C08L 33/20, C09I 3/14. Состав для крепления химических волокон при производстве электростатической замши / С. А. Волкова и др. Опубл. 05.10.1978, бюл. 37.
- 29. Самышкина М. А. Акриловые клеи, применяемые для флокирования / М. А. Самышкина, Г. Н. Сурина // Разработка физико-химических основ технологии электрофлокированных нетканых материалов: сб. науч. тр. ЛТИ им. Ленсовета, 1985. С. 47—50.
- 30. Пробер П. В. Рецептурно-колористический справочник производства обоев и цветных декоративных бумаг. М., Л.: Гослесбумиздат, 1961. 167 с.
  - 31. Березин Б. И. Полиграфическое материаловедение. М., 1984. 270 с.
- 32. Гаврилова О. Н. Покрытия обоев на основе водных дисперсий полимеров: автореф. дис. ... канд. техн. наук. M., 1984. 25 с.
- 33. Ребиндер П. А. О термодинамических равновесных двухфазных дисперсионных системах // Коллоидный журнал. -1970.- Т. 32.- С. 480.
- 34. Zorll U. Einflusse von Pigmente und Fullstoffen auf die Klebstoffhaftung // Gh Flock. -1984. N 33. S. 4-15.
- 35. Verse N. Bringt der Einsdtz von Schaumkleberstoffen dem Verarbeiter Vorteile // 9. Intertnationale Flockseminar. Darmstadt, 27 28 Okt. 1986. S. 121–137, 153–166.
- 36. Technique de teinture et d'apprets en millien mousse // L'Industrie textile, 1981. V. 1. N 112. P. 547-549.

- 37. Гиббс Дж. В. Термодинамические работы. М.-Л.: Гостехиздат, 1950. С. 92.
- 38. Joseph A. Plateau. Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Paris, 1953, parte 1.
- 39. Дерягин Б. В. К вопросу об изложении в курсах коллоидной химии устойчивости коллоидов // Коллоидный журнал. -1961. -T. 23. -№ 3. -C. 361– 362.
- 40. Трапезников А. А. Влияние добавок лаурилового спирта на электросопротивление и вязкость двухсторонних пленок натрийлаурилсульфата при больших концентрациях электролитов / А. А. Трапезников, Е. С. Докукуина // Коллоидный журнал. — 1978. — Т. 40. —  $\mathbb{N}$  1. — С. 92—99.
- 41. Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. М.: Химия, 1989. 464 с.
- 42. Дерягин Б. В. К вопросу об определении понятия и величины расклинивающего давления и его роли в статике и кинетике тонких слоев жидкостей // Коллоидный журнал. -1955. Т. 17. № 3. С. 207–214.
- 43. Еркова Л. Н. Латексы / Л. Н. Еркова, О. С. Чечик. Л.: Химия, 1983. 224 с.
- 44. Hebbäker R. Flocaje multicolor sobre T-shirts y otros textiles de confeccion // Revista de la Industria textil.—  $1979. N_{\odot} 164. P. 54-60.$
- 45. Бершев Е. Н. Печать ворсом / Е. Н. Бершев, Л. В. Лобова. М.: Легпромбытиздат, 1989. 128 с.
  - 46. Пат. США № 3956522, МКИ В 05 В 1/14, В 32 В 33/00.
- 47. Пат. США № 4314813, МКИ Д 06 Р 5/00, В 44 С 3/02, НКИ 8/468. Способ флокирования. Заявл. 29.09.80, опубл. 09.02.82.
- 48. Пат. США № 4273817, НКИ 428/90, МКИ В 44 С 3/02. Переводная аппликация, переносимая тепловым способом. Опубл. 16.06.81.
- 49. Способ получения декоративных изображений путем печати ворсом и материал, получаемый этим способом. Заявка Франции № 2343609, МКИ 44 С 1/00, опубл. 11.11.77.
- 50. Пат. США №4390387, МКИ В 32 В 93/00, НКИ 428/90. Устройство для изготовления флокированного материала с первым слоем из термореактивного адгезива и вторым слоем из термопластичного адгезива. Заявл. 16.06.81, опубл. 28.06.83.
- 51. Шпитцнер К. Печатание текстильных материалов. М.: Легкая и пищевая промышленность, 1984. 208 с.
- 52. Хофманн И. Контролирование объема адгезива фотофильмпечати // Flock. -1989. -№ 55. C. 12-16.
- 53. Смирнов Г. П. Разработка методов и исследование материалов с электростатически нанесенным ворсом: автореф. дис....канд. техн. наук.  $\Pi$ ., 1969. 34 с.

- 54. Потёмина Т. Н. Исследование и разработка методов оценки упругих свойств ковровых материалов: автореф. дис....канд. техн. наук. Л., 1980.-23 с
- 55. Степанов М. М. Оценка износостойкости электрофлокированных материалов изменением потери толщины с помощью магнитного измерителя покрытий / М. М. Степанов, Т. Н. Анисимова // Проблемы разработки технологических процессов и оборудования для производства нетканых текстильных материалов: межвуз. сб. научных трудов. Л.: 1978, с.193 196.
- 56. Бершев Е. Н. Исследование теплозащитных и звукопоглощающих свойств материалов с электростатически нанесенным ворсом // Изв. вузов. Технология текстильной промышленности. 1969. № 5. C. 12-15.
- 57. Verse N. Prüfungen der Verschleiβfestigkeit der Erzeugnisbefloking // Flock. 1980. № 19. S. 17–25.
- 58. Бершев Е. Н. Изучение эксплуатационных свойств ковров / Е. Н. Бер-шев, Г. П. Смирнов. М.: Легкая индустрия, 1976. 150 с.
- 59. Бершев Е. Н. Исследование плотности ворсового покрова материалов с электростатически нанесенным ворсом / Е. Н. Бершев, И. С. Сезина, Г. П. Смир-нов // Изв. вузов. Технология текстильной промышленности. 1970. N 1. С. 11—15.
- 60. Склянников В. П. Иерархическая структура потребительских свойств тканей для бытовой одежды: сб. Расширение ассортимента и повышение качества промышленных товаров. М., 1975. С. 3–27.
- 61. Кукин Г. Н. Классификация приборов для испытания тканей и трикотажа на истирание // Изв. вузов. Технология легкой промышленности. 1964. № 6. С. 52.
- 62. Кукин Г. Н. Текстильное материаловедение / Г. Н. Кукин, А. Н. Соловьев. М.: Легкая индустрия, 1967. T. 3. 303 с.
- 63. Teije S. Study on shimatsu Tayanari Journal of the Textile Machinery Society of Japan. 1984. V. 30. № 3. P. 67–71.
- 64. Testing Velwets for loss a pile. Wool Rechard and Textile World. 1983. 142. № 3463. P. 47.
- 65. Борисов Ю. «Арктик»: новые теплоизоляционные материалы для строительства // Технический текстиль. -2002. N 2. C. 27-28.
  - 66. Материалы интенет-сайта <u>www.buran.ru</u>.
- 67. Schnitt und Tragekomfort zählen. Der Europäische Markt für Arbeitsschutzkleidung // Schweitzer Maschinenmarkt. − 1997. − № 46. − S. 24–25.
- 68. Tomasini M. Indumenti che riparano dal freddo polare // Tessilli per impieghi Tecnici.  $-1995. N_{\odot} 5-6. P. 44-45.$
- 69. Achtsnit H.-P. Textile silica sliver for refractory applications // Technical Textiles International. -1996.  $-N_{\odot}$  9. -P. 24–28.
- 70. Грушман Р. П. Теплоизоляционные работы: справочник. С.-Пб.: Стройиздат, 1997. 318 с.

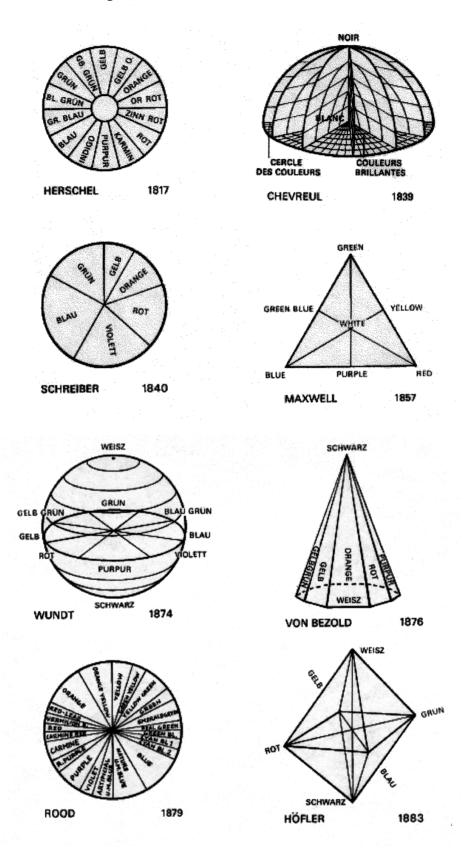
- 71. Заявка Великобритании, А1 2277016, А41 D 13/00; Mills Nicolas John, № 9323861, 6. Термопокрытие. Заявл. 19.11.93, опубл. 19.10.94 // Изобретения стран мира, 1996, № 8.
- 72. Международная заявка, A1 9620616, A41 D 13/00; W.L.GORE & Associates GmbH, № PCT/EP 96/00026. Цельный защитный комбинезон. Заявл. 04.01.96, приоритет от 05.01.95, опубл. 11.07.96 // Изобретения стран мира, 1997, № 6.
- 73. Заявка Японии Б2 3 68122, МКИ 5 А41 D 13/02, К. К. Мутоу, С. Х. Нип-пон, № 59 29273. Морозоустойчивый защитный скафандр. Опубл. 25.10.91 // Изобретения стран мира, 1993, № 4.
- 74. Заявка Германии А 14025813. МКИ 5 А41 D 13/00. Теплозащитная одежда. Опубл. 20.02.92 // Изобретения стран мира, 1994, № 6.
- 75. ГОСТ Р 12.4.303–2016. «ССБТ. Одежда специальная для защиты от пониженных температур. Технические требования». М.: ФГУП «СТАН-ДАРТИНФОРМ», 2016.
- 76. ГОСТ Р 12.4.185–99 ССБТ. Средства индивидуальной защиты от пониженных температур. Методы определения теплоизоляции комплекта. М.: ИПК Изд-во стандартов, 2000.
- 77. Wasylyk J. N. FR Fabrics for personal protection / Protective Clothing: 9th Annual Conf. Charlotte, USA, 30 May 1 Jun. 1995. P. 1–6.
- 78. Tyobo Chiga. Properties and applications of PBO fibers (poly-p-phenylene benzobisoxazol) / 35. International Chemiefasertagung, Mikro- u. Mehrfachkomponentenfasern, Dornbirn, Австрия, 25–27 сентября 1996. Р. 1–10.
- 79. ГОСТ Р 12.4.200–99. ССБТ. Одежда специальная для защиты от тепла и огня. Метод испытаний при ограниченном распространении пламени. М.: ИПК Изд-во стандартов, 2000. 11 с.
- 80. DIN EN ISO 15025-2017 Protective clothing Protection against flame Method of test for limited flame spread. (Одежда защитная. Защита от пламени. Метод испытаний на ограниченное распространение пламени). М.:  $\Phi \Gamma Y \Pi$  «СТАНДАРТИН $\Phi$ OPM», 2017. 31 с.
- 81. Поверхностно-активные вещества: справочник / А. А. Абрамзон и др. Л.: Химия, 1979. 412 с.
- 82. ГОСТ 8433–81 «Вещества вспомогательные ОП-7 и ОП-10. Технические условия. М.: Изд-во стандартов. 1981. 12 с.
- 83. ГОСТ 8980–75. Вещества текстильно-вспомогательные. Стеарокс-6. Технические условия. М.: ИПК Изд-во стандартов. 1998. 6 с.
- 84. ГОСТ 6749–86. Бумага для обоев. Технические условия. М.: ИПК Изд-во стандартов. 1998. 6 с.
- 85. ГОСТ 24234—80. Пленка полиэтилентерефталатная. Технические условия. М.: Изд-во стандартов. 1992. 17 с.

- 86. Лобова Л. В. Лабораторная установка для нанесения многоцветных ворсовых рисунков методом электрофлокирования УМФ-2/1 // Разработка физико-химических основ технологии электрофлокированных нетканых материалов: сб. науч. тр. Л.: ЛИТЛП им. С. М. Кирова, 1985.
- 87. А.с. 1219155. Устройство для флокирования штучных изделий. Опубл. в БИ 1986. № 11. Бершев Е. Н., Грутько Н. М., Лобова Л. В., Зотов А. В., Соколов В. Н.
- 88. Кукин Г. Н. Лабораторный практикум по текстильному материаловедению / Г. Н. Куклин, А. Н. Соловьев, Ф. Х. Садыкова. М.: Легкая индустрия, 1974. 390 с.
- 89. Паулик Е. Дериватограф Q-1500D / Е. Паулик, Ф. Арнолд. Будапешт: Изд-во Будапештского политехн. ин-та, 1981. – 21 с.
- 90. ГОСТ 25276-82. Полимеры. Метод определения вязкости ротационным вискозиметром при определенной скорости сдвига. М.: Изд-во стандартов, 1982.-4 с.
- 91. Лабораторные работы и задачи по коллоидной химии / сост. Ю. Г. Фро-лов, А. С. Гродский. М.: Химия, 1986. 216 с.
- 92. ГОСТ 14236–81. Пленки полимерные. Метод испытания на растяжение. М.: Изд-во стандартов, 1989.-8 с.
- 93. ГОСТ 10550–93. Материалы текстильные. Полотна. Методы определения жесткости при изгибе. M.: Изд-во стандартов. 10 с.
- 94. ГОСТ 8977—74. Кожа искусственная и пленочные материалы. Методы определения гибкости, жесткости и упругости. М.: ИПК Изд-во стандартов, 1998.-6 с.
- 95. ГОСТ Р 57470–2017 (ИСО 9073–9:2008). Материалы текстильные. Методы испытаний нетканых материалов. Ч. 9. Определение драпируемости, включая коэффициент драпируемости. М.: Стандартинформ, 2017. 11 с.
- 96. Спектроколориметр «Пульсар». Паспорт 5П1.500.004ПСМ: Чирчикское ОКБА НПО «Химавтоматика», 1989. 44 с.
- 97. Основные формулы и данные по теплообмену для инженеров: справочник; пер. с англ. М.: Атомиздат, 1979. 216 с.
- 98. ТКИ Виртестер. Универсальный прибор для испытания тканей на истирание, тип FF-21. Техническое описание и указания по эксплуатации прибора. Венгерский НИИ ТП, отделение по усовершенствованию и производству приборов 1201. Будапешт. 30 с.
- 99. ГОСТ 27542–87. Ткани суконные чистошерстяные и полушерстяные ведомственного назначения. Технические условия. М.: ИПК Изд-во стандартов, 1997.-12 с.
- 100. ГОСТ 18976–73. Ткани текстильные. Метод определения стойкости к истиранию. М.: Изд-во стандартов, 1985. 5 с.
- 101. ГОСТ 9733.4–83. Материалы текстильные. Метод испытания устойчивости окраски к стиркам. М.: Изд-во стандартов, 1983. 4 с.

- 102. Пат. РФ № 93030986 Российская Федераиця, опубл. 20.09.1996. Способ получения узорчатого электрофлокированного материала на бумажной подложке, преимущественно обоев / Бершев Е. Н., Дементьева С. П., Кравецкая Е. А., Лобова Л. В.; заявитель и патентообладатель Ленингр. интекст. и легк. пром-сти. Опубл. 20.09.96.
- 103. Лобова Л. В. Исследование факторов устойчивости и структурирования воднодисперсионных клеев для электрофлокирования / Л. В. Лобова, Е. А. Кравецкая, Е. И. Зайцева: межвуз. сб. науч. тр. М.: МТТА им. А. Н. Косыгина, 1995. С. 58—63.
- 104. Захарченко В. Н. Коллоидная химия. М.: Высшая школа, 1989. 238 с.
  - 105. Воюцкий С. С. Курс коллоидной химии. M.: Химия, 1975. 512 c.
- 106. Ефремов Н. Ф. Периодические коллоидные структуры. Л.: Химия, 1971.-191 с.
- 107. Кравецкая Е. А. Разработка процесса клеепечати в технологии электрофлокирования: дис... канд. техн. наук. СПб.: СПГУТД, 1992.
- 108. Збинден Р. Инфракрасная спектроскопия полимеров. М.: Мир, 1966. 340 с.
- 109. Инфракрасная спектроскопия полимеров / И. Дехант и др. М.: Химия, 1976. 260 с.
- 110. Фазер Л. Органическая химия: пер. с англ. Н. С. Вульфсон / Л. Фазер, М. Фазер. М.: Химия, 1983.-224 с.
- 111. Тарутина Л. И. Спектральный анализ полимеров / Л. И. Тарутина, Ф. О. Позднякова. Л.: Химия, 1986. 248 с.
- 112. Горчакова В. М. Влияние термосенсибилизирующих добавок на агрегативную устойчивость акриловых связующих для нетканых материалов / В. М. Горчакова, Е. Б. Малюкова, И. А. Грицкова // Изв. вузов. Технология текстильной промышленности. 1989.  $\mathbb{N}$  5. С. 42.
- 113. Сенахов А. В. Загустки, их теория и применение / А. В. Сенахов, В. В. Коваль, Ф. И. Садов. М.: Легкая индустрия, 1975. 304 с.
- 114. Пат. № 2001177 Российская Федерация. Способ получения узорчатого электрофлокированного материала. Бершев Е. Н., Кравецкая Е. А., Лобова Л. В. Опубл. 15.10.93, бюл. № 37–38.
- 115. Пат. № 2051999 Российская Федерация. Способ получения электрофлокированных материалов. Бершев Е. Н., Иванова Н. И., Лобова Л. В., Француз З. С. и др. Опубл. 10.01.1996.
- 116. А. с. 1479485. Клеевая композиция для закрепления ворса при электрофлокировании. Бершев Е. Н., Иванова Н. И., Соколова О. В., Лобова Л. В., Кузнецова Е. И. Опубл. в БИ 15.05.1989, № 18.
- 117. Пат. № 1714884 Российская Федерация. Способ получения переводного ворсового материала. Бершев Е. Н., Иванова Н. И., Лобова Л. В., Соколо-ва О. В.

- 118. Тихомиров В. Б. Планирование и анализ эксперимента. М.: Легкая индустрия, 1974.-262 с.
- 119. Андросова Г. М. Разработка способа производства одежных флокированных материалов с заданными свойствами: дис... канд. техн. наук. Л.: ЛИТЛП, 1988.
- 120. Андросова Г. М. Исследование возможности применения вспененых клеев для получения электрофлокированных материалов. Ч. 1. / Г. М. Андросова, Е. Н. Бершев, Л. В. Лобова // Изв. вузов. Технология текстильной промышленности. − 1996. − № 2. − С. 89–92.
- 121. Андросова Г. М., Бершев Е. Н., Лобова Л. В. Исследование возможности применения вспененых клеев для получения электрофлокированных материалов. Ч. 2 Известия вузов. Технология текстильной промышленности, 1996, № 3, с. 76 79.
- 122. Адлер Ю. П. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1971.-238 с.
- 123. А. с. СССР № 781236, МКU Д06М 13/40. Состав для обработки вискозного ворса. Дмитриев В. В., Бершев Е. Н., Хархаров А. А. Опубл. 23.11.80, бюл. № 43.
- 124. А. с. СССР № 1776709. Способ получения клеевой композиции для электрофлокированного текстильного материала. Бершев Е. Н., Лобова Л. В., Шевчук Г. М. Опубл. 23.11.1992, бюл. № 43.
- 125. Бершев Е. Н. Оптимизация состава вспененной клеевой композиции для получения одёжных электрофлокированных материалов / Е. Н. Бершев, Г. М. Андросова, Л. В. Лобова //Современные технологии производства нетканых, плёночных материалов, кожи и меха: сб. науч. тр. СПб.: СПГУТД, 2000. С. 62—70.
- 126. Бершев Е. Н. Получение флокированных рисунков методом термопереноса / Е. Н. Бершев, О. В. Соколова, Л. В. Лобова // Текстильная промышленность. 1988. № 2. С. 54—56.
- 127. Лобова Л. В. Исследование влияния состава клея на свойства текстильных материалов с термопереносными флокированными рисунками / Л. В. Лобова, А. В. Луценко // Новые технологии и материалы лёгкой промышленности: сб. междунар. науч.-практ. конф. Казань: КГТУ, 19–22 мая 2009.
- 128. Иванова Н. И. Создание основ технологии и оборудования термопереносной ворсовой печати текстильных изделий // Н. И. Иванова, Л. В. Лобова, В. Б. Остпова // Перспективные материалы и изделия легкой промышленности: сб. науч. тр. СПб.: СПГУТД, 1994. С. 102–103.
- 129. Джураев 3. Б. Влияние режимов сушки ИК на качество ворсопечатных материалов / 3. Б. Джураев, Л. В. Лобова. Новые технические и технологические разработки и их внедрение в текстильной и легкой промыш-

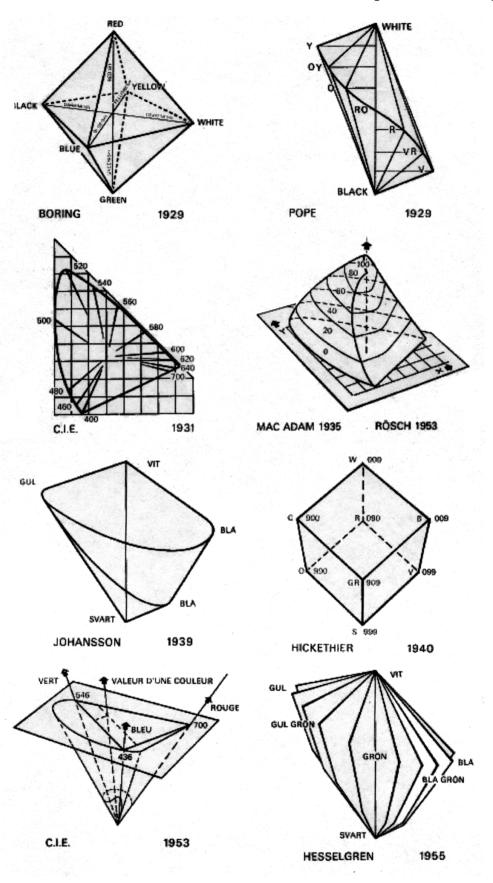
- ленности. 16–17 мая 1989: тез. докл. Ивановского текст. ин-та им. М. В. Фрунзе. Иваново: ИвТИ, 1989. 155 с.
- 130. Бершев Е. Н. Исследование кинетики процесса инфракрасной сушки флокированных нетканых материалов / Е. Н. Бершев, Л. В. Лобова, З. Б. Джураев // Разработка и создание нового ассортимента нетканых текстильных материалов бытового и технического назначения: сб. науч. тр. Ленингр. интта текст. и легк. пром-сти. Л.: ЛИТЛП, 1989. 92 с.
- 131. Бершев Е. Н. О механизме сушки инфракрасными лучами флокиро-ванных нетканых материалов / Е. Н. Бершев, Л. В. Лобова, З. Б. Джураев // Изв. вузов. Технология текстильной промышленности. 1990. № 3. С. 30—33.
- 132. Лобова Л. В. Влияние на физико-механические свойства трикотажа с флокированной отделкой параметров рисунка / Л. В. Лобова, Г. М. Шевчук // Проблемы повышения эффективности производства, разработки и исследова-ния нетканых материалов: межвуз. сб. научн. работ, посвященный 70-й годовщине Великой Октябрьской социалистической революции. М., 1987. С. 126–129.
- 133. Berčev E. N. Einflub des wascheprozesses auf die Eigenschaften der Beflokten Stoffe / E. N. Berčev, L. W. Lobova, G. M. Androsova // Flock, 1989.  $N_{2}$  3. S. 6–12.
- 134. Определение режима стирки материалов с флокированной отделкой / Е. Н. Бершев, Л. В. Лобова, Г. М. Андросова, Н. А. Семенова // Изв. вузов. Технология текстильной промышленности. -1990. -№ 1. C. 9–12.
- 135. Лобова Л. В. Экологические аспекты технологии электрофлокирования: сб. докл. І-й междунар. флок-конференции. С.-Петербург, 3–4 ноября 1993.
- 136. Бершев Е. Н. Исследование распределения плотности нанесения ворса при создании флокированных узоров / Е. Н. Бершев, Л. В. Лобова // Изв. вузов. Технология текстильной промышленности. − 1982. − № 5. − С. 32–33.
- 137. Berčev E. N. Musterauftrag mittels electrostatischer Beflockung // E. N. Berčev, L. W. Lobova. Technische Textilien. 1990. № 2. S. 49–50.
- 138. Лобова Л. В. Влияние структуры шаблонов на параметры многоцветного флокирования // Текстильная промышленность. 1985. № 9. С. 53—55.
- 139. Беленький Л. И. Применение цветоведения в текстильной промышленности. Ч. 2. / Л. И. Беленький, М. С. Овечкис. М.: Легкая индустрия, 1971.-389 с.
- 140. Беленький Л. И. Применение цветоведения в текстильной промышленности. Ч. 1. / Л. И. Беленький, М. С. Овечкис. М.: Легкая индустрия, 1970.-262 с.
- 141. Alderson J.V., Atherton E., Derbyshire A. Text. Inst. 1961. № 77. P. 657.


- 142. Kybelka N., Munk L., Tech. Physik, 1931. № 12. P. 592.
- 143. Früle L. F. Text. Inst., 1952. № 43. S. 604.
- 144. Atherton E. Text. Inst. 1955. № 1. P. 389.
- 145. Гуревич М.М. Цвет и его измерение. М.-Л.: 1950. 267 с.
- 146. Нечаева И. А. Цветоведение и теория трехцветной репродукции. М.: Искусство, 1956. 186 с.
- 147. Колориметрический атлас. Образцовая мера 2-го разряда. М., 1966.-93 с.
- 148. Корн Г. Справочник по математике / Г. Корн, Т. Корн. М., 1984. 831 с.
- 149. Раков О. Н. Разработка технологических основ производства ворсопечатных нетканных материалов с цветовым эффектами: дис.... канд. техн. наук. СПб, 1993.
- 150. Лагутин В. И. Цветовые характеристики объектов, как результат косвенных измерений // Измерительная техника. 1987. № 10. С. 25—27.
- 151. Гуревич М. М. Геометрические решения задач смешения цветов // Журнал технической физики. 1945. T. 15. Вып. 3. С. 136–145.
- 152. Соловьев В. А. Аналитический метод определения цветового тона и чистоты цвета / В. А. Соловьев, В. Ф. Беленицкий // Измерительная техника. -1988. № 5. С. 29—30.
  - 153. Кириллов Е. А. Цветоведение. М.: Легпромбытиздат, 1987. 128 с.
- 154. . Пат. № 1763538 Российская Федерация. МКИ Д 04 Н 11/00. Способ получения многоцветных рисунков на поверхности изделий. Бершев Е. Н., Лобова Л. В., Раков О. Н. Опубл. 23.09.1992, бюл. № 35.
- 155. Пат. РФ № 2045587 Российская Федерация. Способ получения многоцветных рисунков на поверхности изделий. Бершев Е. Н., Лобова Л. В., Ра-ков О. Н. Опубл. 10.10.95, бюл. № 28.
- 156. Хархаров А. А. Печатание и заключительная отделка волокнистых материалов. Л.: Изд-во ЛГУ, 1984. 129 с.
- 157. Серазутдинов М. Н. Расчет деформационных свойств текстильных материалов / М. Н. Серазутдинов, Р. А. Каюмов, В. В. Хамматова // Изв. высших учебных заведений. Технология текстильной промышленности. − 2006. − № 5(293). − С. 34–39.
- 158. Зенкевич О. Конечные элементы и аппроксимации: пер. с англ. М.: Мир, 1986. 318 с.
- 159. Каюмов Р. А. Связанная задача расчета механических характеристик материалов и конструкций из них // Изв. РАН. Механика твердого тела. -1999. № 6. С. 118—127.
- 160. Хамматова, В. В. Регулирование формовочной способности текстильных материалов с использованием плазменных технологий: дис.... д-ра техн. наук / Хамматова Венера Василовна. Казань, 2006. 316 с.

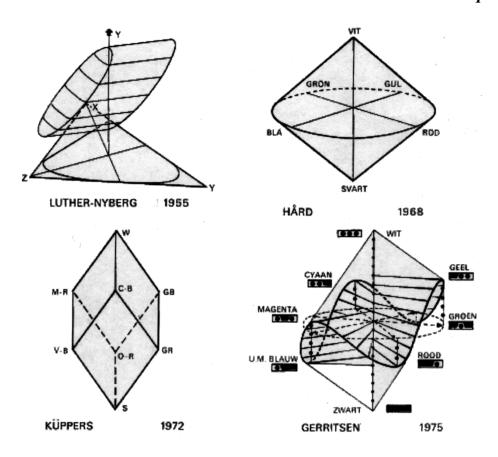
- 161. Мэтьюз Ф. Композитные материалы. Механика и технология / Ф. Мэть-юз, Р. Роллингч. М.: Техносфера, 2004. 408 с.
- 162. Lobova L. V. Mathematical model of a flocked nonwoven material's tensile deformation / L. V. Lobova, F. R. Shakirzyanov // Nonwovens Research Academy, 16–17 November 2010, Aachen.
- 163. Лобова Л. В. Методика определения жесткостных характеристик флокированного тканевого композита / Л. В. Лобова, Р. А. Каюмов, И. З. Мухамедова, А. М. Шакирова // Изв. вузов. Технология лёгкой промышленности. -2010. -№ 4. -C. 34–38.
- 164. Лобова Л. В. Оценка способности к складкообразованию композита на тканевой основе / Л. В. Лобова, Р. А. Каюмов, А. М. Шакирова // Математическое моделирование в механике деформируемых тел и конструкций. Методы граничных и конечных элементов: ХХШ междунар. конф. 28 сентября –1 октября 2009. С. 204–208.
- 165. Зарубин В. С. Расчет и оптимизация термоизоляции. М.: Энергоатомиздат, 1991.-192 с.
- 166. Elsner N. Grundlagen der Technisher Thermodynamik. Band 2. Warmeübertragung. Akademie Verlag. GmbH, Berlin, 1993.
- 167. Hell F. Grundlagen der Warmeübertragung. VDI-Verlag, Düsseldorf, 1982.
- 168. Нащёкин В. В. Техническая термодинамика и теплопередача. М.: Высшая школа, 1990. 469 с.
- 169. Технология теплозащиты и теплоизоляции изделий: конспект лекций. В 2 ч. / В. А. Калинчев; под ред. В. С. Камалова; Гос. ком. СССР по нар. образованию. М.: Изд-во МГТУ им. Н. Э Баумана, 1991 (Ч. 1), 1993 (Ч. 2).
- 170. Теплофизика и оптимизация тепловых процессов: межвуз. сб. науч. тр. Куйбышев: КПтИ, 1983. 162 с.
- 171. Superisolationen, VDI-Wärmeatlas. 6.Auflage. VDL-Verlag GmbH, Düsseldorf, Kf1 Kf19.
- 172. Super lightweiht structures for heat insulation materials / E. Bershev // The wold's leading nonwovens exhibition and congress Index 99. 27–30 April. 1999. Geneva. Switzerland.
- 173. Бершев Е. Н. Аспекты создания многослойного пленочного электрофлокированного теплоизоляционного материала / Е. Н. Бершев, Л. В. Лобова, И. А. Осминина // Современные технологии текстильной промышленности. Текстиль-96: тез. докл. Всерос. науч.-технич. конф. 26–27 ноября 1996. М.: МГТА, 1996. С. 84–85.
- 174. Hitze- und Kälteschutz mit superleichten Spezialstrukturen / E. N. Bershev and anacher: Techtextil-Simposium, Frankfurt am Main, 14 April 1999. Vortrag 306.
- 175. Лобова Л. В. Разработка сверхлегкой суперизоляции для технических целей и теплозащитной одежды в диапазоне высоких и низких темпера-348

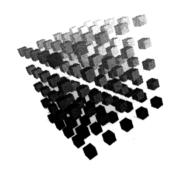
- тур // Нетканые материалы технического и бытового назначения: сб. докл. конф. СПб., 19 октября 1999. С. 46–53.
- 176. E. Bershev. Superisolation Hig-Tech-Flockanwendung / E. Bershev, L. Lobova, N. Bershev . 15 Internationales Flock Symposium. 22 und 23 März. 1999. Dresden. Germany. S.1.1–1.7.
- 177. Ch. Freundenberg. Einsatz von Flock bei der Entvoicklung unkonventioneller Dämmstoffstrukturen / Ch. Freundenberg and andher // Technische Textilien. 1999. November. S. 292–294.
- 178. Deutsches Patent № 196 35 214 C2, 05.08.1999. Mehrschichtiger Folien- Dämmstoff für Warme- isolation und Schallschutz. Offermann P., Hoffmann G., Freudenberg Ch., Berschev E., Lobova L.
- 179. US Patent № 6280814 B 1, 28.08.2001. Multilayered sheet insulating material for heat insulation and sound proofing. Offermann P., Hoffmann G. Freudenberg Ch., Bersev E., Lobova L.
- 180. European Patent 0 922 179 B1, 15.05.2002. Multilayered sheet insulating material for heat insulation and sound proofing. Offermann P., Berschev E., Hoffmann G., Lobova L., Freundenberg Ch.
- 181. Катц А. В. Металлизация тканей: автореф. дис. ... д-ра техн. наук. М.: МТИЛП, 1962. 30 с.
- 182. Лобова Л. В. Влияние вида и расположения слоев на свойства многослойного теплоизоляционного флокированного материала // Вестник Казанского технологического университета. 2009. № 3. С. 46–52.
- 183. Хромеева И. А. Применение теплоизоляционных пакетов для производства защитной одежды / И. А. Хромеева, Е. Н. Бершев, Л. В. Лобова. — Новое в текстильной промышленности: сб. тез. межвуз. науч.-техн. конф. — Димитровград, 14—16 декабря, 1999. — С. 58.
- 184. Einfluss ausgewählter Pigmente auf die Submikrostructur von Polypropylenfolien // Textilveredlung. 1984. 19.  $\mathbb{N}_{2}$  6. S. 184–191.
- 185. Паттерсон Д. Пигменты (Введение в физическую химию пигментов). Л.: Химия, 1971.-176 с.
- 186. Flockdämmstoffe für Hitze und Kälteschutz / P. Offermann, L. Lobova, N. Bersev, I. Khromeeva. Kleidung: 5 Dresdner Textiltagung. Dresden, 5–6 Juni 2000. S. 1–14.
- 187. Хромеева И. А. Разработка нетканого материала на основе пленочных электрофлокированных структур и модулей для теплозащитной одежды: дис. ... канд. техн. наук. СПб., 2001.
- 188. Innovativer Superisolations–Dämmstoff für Wärme und Kälteschutzkleidung / L. Lobova and andher: Internationales Avantex-Symposium 2000. Frankfurt am Main. 9 S.
- 189. Innovativer Superisolations–Dämmstoff für Wärme und Kälteschutzkleidung / L. Lobova and andher: Internationales Avantex-Symposium.  $2000.-S.\,1–9.$

- 190. Лобова Л. В. Исследование эксплуатационных характеристик теплоизоляционных пакетов для защитной одежды / Л. В. Лобова, Е. Н. Бершев, И. А. Хромеева // Современные технологии производства нетканых, плёночных материалов, кожи и меха: сб. науч. тр. СПб.: СПГУТД, 2000. С. 47—56.
- 191. Lobova L. Einzatzmöglichkeiten des Super-Isolations-Flock-Dämmstoffes innerhalb der Berufsbekleidung. – ITB-Mitteilungen, Technische Universität Dresden. № 1. 2001. – S. 16–19.
- 192., Dörfel A., Lobova L., Bersev N., Khromeeva I. Elektrostatische Beflockung für Technische Textilien / Freundenberg Chr. and andher. 16 Internationales Flocksymposium. Dresden. 21–22 März. 2001.
- 193. Свидетельство РФ на полезную модель № 14109 от 10.07.2000. Костюм защитный мужской для работы в условиях повышенных температур / Хромеева И. А., Бершев Е. Н., Голубев М. И., Лобова Л. В.
- 194. Лобова Л. Суперизоляционный флокированный материал / Л. Лобова, Н. Бершев, И. Хромеева // Технический текстиль. 2001. № 2. С. 33–35.
- 195. Бершев Е. Н. Исследование подачи волокон при печати ворсом / Е. Н. Бершев, Л. В. Лобова, М. А. Никонова: межвуз. сб. науч. тр. М.: МТИ, 1987. С. 19–24.
- 196. А. с. № 1310463 СССР. МКИ D 04 H 11/00, В 05 В 5/00. Устройство для нанесения ворса в электрическом поле. Е. Н. Бершев, И. В. Котельников, Л. В. Лобова. Опубл. 15.05.87, бюл. № 18.


## Приложение А. Цветовые модели




## Продолжение прил. А




## Продолжение прил. А



## Окончание прил. А





**COLORCUBE PUZZLE 1998** 

Таблица Б.1. Технические характеристики основных теплоизоляционных материалов, применяемых в строительстве

| Изделие, материал                                                                                                     | Средняя<br>плот-<br>ность в<br>конст- | Теплопроводность ции, Вт/(м.°С), с те для поверхнос | емпературой | Температура<br>применения, | Груп-<br>па<br>горю- | Область применения                                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|-------------|----------------------------|----------------------|----------------------------------------------------------------------------|--|--|
|                                                                                                                       | рук-ции,<br>кг/м <sup>3</sup>         | 20 и выше                                           | 19 и ниже   | °C                         | чести                |                                                                            |  |  |
| Изделия перлитоцементные (ГОСТ 18109–80) — плиты, полуцилиндры, сегменты; скорлупы перлитоцементные ТУ 36.16.22–72–96 | 300                                   | $0.076 + 0.000 \ 19 \ t_{M}$                        | _           | +20+600                    | Н                    | Изоляция промыш-<br>ленного оборудования<br>и трубопроводов                |  |  |
| Изделия ивестково-кремне-<br>земистые (ГОСТ 24748–81) —<br>плиты, полуцилиндры, сегменты,<br>скорлупы                 | 225                                   | $0.078 + 0.000 \ 15 \ t_{\scriptscriptstyle M}$     | -           | +20+600                    | Н                    | Изоляция трубопроводов и изделий всех видов, преимущественно в первом слое |  |  |
| Полуцилиндры и цилиндры минераловатные на синтетическом связующем (ГОСТ 23208–83)                                     | 126–175                               | $0.051 + 0.000 \ 2 \ t_{_{M}}$                      | 0.054-0.059 | -180+400                   | Н                    | _                                                                          |  |  |

Продолжение табл. Б.1

| Изделие, материал                                                                                                                                                                                                               | Средняя<br>плот-<br>ность в<br>конст- | Теплопроводность в конструк-<br>ции, Вт/(м·°С), с температурой<br>для поверхностей, °С |             | Температура<br>применения,                                                                                              | Груп-<br>па<br>горю- | Область применения                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                 | рук-ции,<br>кг/м <sup>3</sup>         | 20 и выше                                                                              | 19 и ниже   | °C                                                                                                                      | чести                |                                                                                          |  |
| Маты минераловатные прошивные безобкладочные или в обкладках из металлической сетки, стеклоткани или крафт-бумаги (ГОСТ 21880–94; ТУ 36.16.22–10–89; ТУ 34.26.10579–95 и др.) Цилиндры минераловатные (ТУ 5762–013–04001485–97) | 133–162                               | $0.049 + 0.000 \ 2 \ t_{\scriptscriptstyle M}$                                         | 0.059-0.054 | -180+450<br>для матов на<br>ткани, сетке,<br>холсте из<br>стекловолок-<br>на;<br>до +700 на<br>металличес-<br>кой сетке | Н                    | Изоляция промыш-<br>ленного оборудования<br>и трубопроводов                              |  |
| Пенопласт жесткий ФФ (ТУ 6–05–1303–76)                                                                                                                                                                                          | 170; 200                              | -                                                                                      | 0.055-0.052 | -60+150                                                                                                                 | ТΓ                   | Изоляция армированных и плоских конструкций                                              |  |
| Полотно иглопробивное стеклянное (ТУ 6–11–570–83;<br>ТУ 6–00209775.051–95)                                                                                                                                                      | 140                                   | $0.047 + 0.000\ 23\ t_{_{M}}$                                                          | 0.053-0.047 | -200+550                                                                                                                | Н                    | Изоляция промыш-<br>ленного оборудования<br>и трубопроводов                              |  |
| Изделия из стеклянного шта-<br>пельного волокна на синтетиче-<br>ском связующем<br>(ГОСТ 10499–95)                                                                                                                              | 59–86                                 | $0.044 + 0.000\ 23\ t_{\scriptscriptstyle M}$                                          | 0.053       | -60+180                                                                                                                 | ТΓ                   | Изоляция жилых, общественных и производственных зданий, печей, трубопроводов, транспорта |  |

| Изделие, материал                                                     | Средняя<br>плот-<br>ность в<br>конст- | Теплопроводность в конструкции, Вт/(м·°С), с температурой для поверхностей, °С |             | Температура<br>применения, | Груп-<br>па<br>горю- | Область применения                                                                    |  |
|-----------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------|-------------|----------------------------|----------------------|---------------------------------------------------------------------------------------|--|
|                                                                       | рук-ции,<br>кг/м <sup>3</sup>         | 20 и выше                                                                      | 19 и ниже   | °C                         | чести                |                                                                                       |  |
| Пенопласт плиточный полистирольный (ТУ 6-05-1178-87)                  | 40                                    | _                                                                              | 0.041-0.032 | -80+160                    | Γ                    | В слоистых конструкиях для теплоизоляции, труднозатопляемый, радиопрозрачный материал |  |
| Пенопласт полиуретановый трудносгораемый эластичный (ТУ 6–05–1734–75) | 40–50                                 | _                                                                              | 0.043-0.038 | -60+100                    | ΤΓ                   | Теплоизоляция трубо-<br>проводов и оборудо-<br>вания всех диаметров                   |  |
| Холсты из супертонкого базальтового волокна                           | 50–115                                | 0.031–0.038<br>0.040–0.041                                                     | 0.04        | -269+700                   | Н                    | Тепло- и звукоизоля-<br>ция промышленного<br>оборудования и тран-<br>спортных средств |  |
| Войлок технический грубо-<br>шерстный (ГОСТ 6418-81)                  | 160                                   | 0.050                                                                          | _           | -60+100                    | Γ                    | Тепло- и звукоизоля-<br>ция холодных трубо-<br>проводов, прокладки                    |  |
| Плиты торфяные<br>(ГОСТ 4861–74)                                      | 230                                   | 0.058                                                                          | _           | -60+100                    | Γ                    | Тепловая изоляция строительных конструкций, холодильников, трубопроводов              |  |

| Изделие, материал                        | Изделие, материал  Изделие, материал  рук-ции, |              | Теплопроводность в конструкции, Вт/(м.°С), с температурой для поверхностей, °С  20 и выше 19 и ниже |   |   | Область применения                          |
|------------------------------------------|------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------|---|---|---------------------------------------------|
|                                          | $\kappa\Gamma/M^3$                             | 20 11 BBILLE | 19 II IIIIAC                                                                                        |   |   |                                             |
| Древесноволокнистые плиты (ГОСТ 4598–86) | 200–300                                        | 0.07         | _                                                                                                   | _ | Γ | Тепло- и звукоизоля-<br>ция в строительстве |

 $\Pi$ римечание. H – негорючий;  $\Gamma$  – трудногорючий;  $\Gamma$  – горючий

# Приложение В. Схема и порядок работы на дериватографе системы Ф. Паулик-И. Паулик-Л. Эрдеи

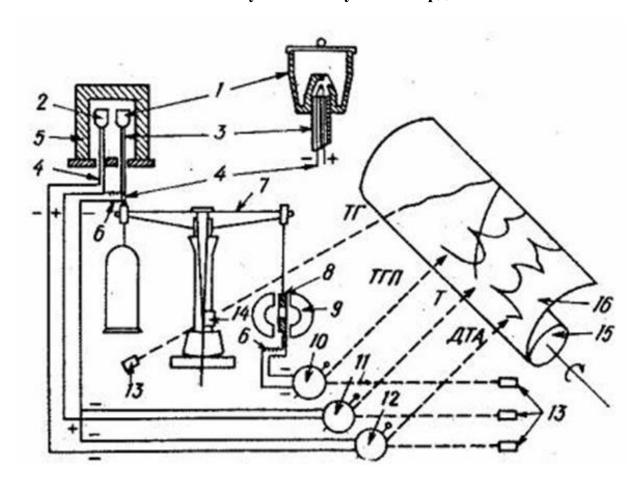



Рис. В.1. Схема и порядок работы на дериватографе системы Ф. Паулик-И. Паулик-Л. Эрдеи:

1 — тигель с исследуемым образцом; 2 — тигель с эталонным веществом; 3 — трубка; 4 — термопара; 5 — электрическая печь; 6 — нескручивающийся провод; 7 — аналитические весы; 8 — катушка индуктивности; 9 — магнит; 10 — гальванометр для ТГП; 11 — гальванометр для измерения температуры; 12 — гальванометр для дифференцированного измерения температуры; 13 — лампы; 14 — оптическая щель; 15 — вращающийся барабан; 16 — диаграммная бумага с записанными термограммами

Дериватография (от лат. derivatus — отведенный, отклоненный и греч. grapho — пишу) является методом синхронного термического анализа физико-химических процессов, происходящих в веществах и материалах в условиях программированного изменения температуры.

Тигель 1 с исследуемым образцом помещают на спай термопары 4, находящейся внутри трубки, которая закреплена на одном плече коромысла весов 7. Рядом расположена аналогичная трубка с дифференциальной термопарой, на спай которой надет тигель 2 с инертным веществом-эталоном.

Такая конструкция позволяет записывать сразу 4 зависимости: разности температур исследуемого образца и эталона, который не претерпевает превращений, от времени (кривая дифференциально-термичекого анализа ДТА); изменения массы от температуры (термогравиметрическая кривая  $T\Gamma$ ); скорости изменения массы от температуры, т. е. производной dm/dt, (дифференциальная термогравиметрическая кривая – ДТГ) и температуры от времени – Т.

Тигли накрываются кварцевыми крышками. При проведении анализа печь 5 опускается, и тигли оказываются внутри нее. На другом плече коромысла весов подвешена индукционная катушка 8, способная перемещаться в поле постоянных магнитов 9. При изменении массы пробы коромысло весов поворачивается, и катушка изменяет свое положение. Напряжение, индуцируемое в катушке, пропорционально скорости изменения массы и подводится устройству регистрации, записывающему дифференциальную термогравиметрическую кривую (ДТГ). Таким же образом регистрируется кривая убыли массы (ТГ).

В качестве инертного вещества-эталона используют вещества, которые не претерпевают в исследуемом температурном интервале превращений с выделением или поглощением тепла. Объемы инертного вещества-эталона и исследуемой пробы должны быть равны.

Разность температур образца и эталона определяется с помощью дифференциальной термопары, которая представляет собой систему двух одинаковых термопар, соединенных последовательно таким образом, чтобы при их одновременном нагревании термо-ЭДС были противоположно направлены. При равенстве температур горячих спаев термопар их термо-ЭДС взаимно компенсируются, и при подключении дифференциальной термопары к гальванометру тока в цепи нет. Появление тока, его величина и напряжение свидетельствуют о разнице температур горячих спаев. Поместив дифференциальную термопару в исследуемое и эталонное вещество, при их одновременном нагревании можно получить кривые ДТА, на которых по оси ординат отмечается разность температур, а по оси абсцисс время, в течение которого производилось нагревание веществ. Условно кривые ДТА строятся таким образом, чтобы эндотермический эффект отмечался кривой вниз, а экзотермический – вверх.

Подготовка дериватографа к измерению. Навеску исследуемого полимера (не более 0,1 г) берут в один платиновый тигель, а навеску эталонного образца в другой. Эталон взвешивают с точностью до  $\pm$  5 %. Оба тигля устанавливают в прибор на торцы вертикально стоящих фарфоровых трубок. Взвешивание в приборе производят по правилам взвешивания на аналитических весах. Световой указатель устанавливают на нулевое деление. Перед взвешиванием проверяют чувствительность весов согласно прилагаемой к прибору инструкции. Тигли накрывают кварцевым стеклом и опускают печь.

Поворотом диска программного управления задают начальное напряжение 60 В и скорость

## Окончание прил. В

повышения напряжения устанавливают на деление 200 мин. Это обеспечит скорость нагрева 5  $^{\rm o}$ С/мин. Устанавливают чувствительность гальванометра ДТГ-1/10, а ДТА-1/5. Предел измерения гальванометра Т ставят на конечную температуру 600  $^{\rm o}$ С.

Выставляют нулевое положение световых указателей: гальванометра T — на температуру окружающей среды, гальванометра ДTA — на середину температурной шкалы,  $ДT\Gamma$ , отступя на 30—40 мм от правого конуса темной шкалы.

Калибровка прибора. Калибровку по массе во всех случаях проводят одинаково. Калибровку по температуре выполняют, используя штриховальный шаблон, имеющий пять делений: 150, 300, 600, 900 и 1200 °С. Устанавливая деление, соответствующее предельно заданному измерению гальванометра Т, напротив щели регистрирующего барабана, производят калибровку при необходимой скорости. В нашем примере против щели барабана устанавливают деление шаблона 600 °С. Включают двигатель, приводящий барабан во вращение, при этом зажигаются лампы штриховки и отсчета времени. По окончании калибровки выключают двигатель и возвращают шаблон в исходное положение. После этого выставляют ту скорость вращения регистрирующего барабана, при которой будет совершаться опыт (для данного опыта указатель ставят на деление 100 мин). Необходимо строго соблюдать последовательность всех операций, при ее нарушении начинает действовать зуммер, сигнализирующий об ошибочном включении прибора.

Проведение эксперимента. После того как дериватограф будет подготовлен к испытанию, дезарретируют весы, подключают гальванометр ДТГ, ручку барабана ставят в нулевое положение, включают двигатели регулятора напряжения и регистрирующего устройства. Включают печь и осветительные лампы ТГ, ДТГ, Т и ДТА.

Эксперимент следует закончить либо по завершении всех замеров, либо после полного оборота регистрирующего барабана.

В последнем случае двигатель автоматически останавливается и подается звуковой сигнал об окончании измерения. После этого выключают двигатель регистрирующего барабана и регулятора напряжения, обогрев, осветительные лампы и гальванометр ДТГ и арретируют весы. Далее поднимают печь и регистрирующий барабан вынимают из прибора.

# Приложение Г. Ротационный вискозиметр Реотест-2

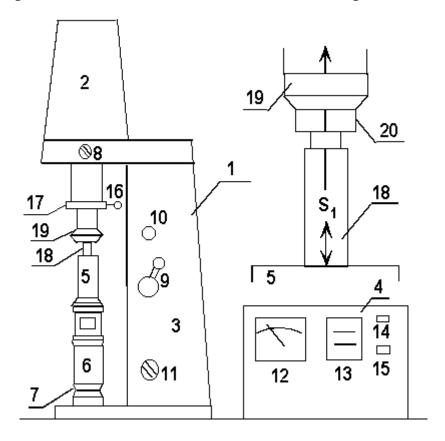



Рис. Г.1. Схема прибора Реотест-2

Ротационный вискозиметр Реотест-2 используется для определения вязкости ньютоновских жидкостей и проведения реологических исследований неньютоновских систем. Измерения проводятся по методу коаксиальных цилиндров или в системе конус-пластина.

Вискозиметр состоит из основного блока  $\underline{1}$ , включающего измерительное устройство с механико-электрическим преобразователем 2 и коробку передач 3 с двигателем, и блока измерений 4. Система коаксиальных цилиндров включает внутренний вращающийся измерительный цилиндр 5 и неподвижный внешний цилиндр 6 со съемной мерной чашечкой 7. На измерительную емкость может надеваться термостатирующее устройство (на рисунке не изображено).

Переключатель 8 позволяет на порядок менять чувствительность системы, которая измеряет усилие вращения внутреннего цилиндра. Рукоятка 9 обеспечивает переключение 12-ступенчатой коробки передач. Номер включенной передачи фиксируется в окошке 10. Переключатель 11 изменяет скорость вращения двигателя  $\omega$ .

Значения скоростей вращения измерительного цилиндра  $\omega$  (об/мин) при различных положениях переключателя 9 и положении Ia переключателя 11 приведены в таблице.

| Номер пе-   | 1    | 2   | 3   | 4    | 5   | 6    | 7  | 8   | 9   | 10  | 11  | 12   |
|-------------|------|-----|-----|------|-----|------|----|-----|-----|-----|-----|------|
| редачи      |      |     |     |      |     |      |    |     |     |     |     |      |
| ω, об/мин   | 0,56 | 1,0 | 1,7 | 3,0  | 5,0 | 9,0  | 15 | 27  | 45  | 81  | 135 | 245  |
| $D, c^{-1}$ | 3,0  | 5,4 | 9,0 | 18,2 | 27  | 48,6 | 81 | 146 | 243 | 437 | 729 | 1312 |

В таблице приведены также значения скоростей деформации сдвига D в зазоре между цилиндрами для использованного внутреннего цилиндра S1. Для положения Ib переключателя 11 значения D и  $\omega$  вдвое ниже приведенных в таблице.

Блок измерения 4 фиксирует усилие вращения  $\alpha$  (индикатор 12) и реальную частоту сети n (индикатор 13). Приведенные в таблице значения  $\omega$  и D умножаются на коэффициент n/50, в котором реальная частота сети определяется по резонирующей (размазавшейся) метке индикатора 13. На внешней панели блока измерений находятся также выключатели двигателя 14 и измерительного устройства 15.

Связь напряжения сдвига  $\tau$  с показаниями измерителя (12)  $\alpha$  для измерительного цилиндра S1 определяется следующими соотношениями:

- в положении I переключателя 8  $\tau = 0,552\alpha$  (Па) или  $\tau = 5,52\alpha$  (дин/см²);
  - в положении II переключателя 8:  $\tau = 5,53\alpha$  (Па) =  $55,3\alpha$  (дин/см<sup>2</sup>). Порядок работы на приборе Реотест-2

Придерживая правой рукой внешний цилиндр 6, левой рукой повернуть влево до упора рычаг 16 с натяжным стопорным кольцом 17 и снять вниз внешний цилиндр. Убедившись в чистоте цилиндров, отвернуть от внешнего цилиндра мерную чашечку 7, заполнить ее доверху исследуемой жидкостью и снова привернуть к цилиндру. Повернуть внешний цилиндр меткой I II к себе, вставить его в прорезь крепежного устройства и закрепить поворотом рычага вправо до упора. Установив переключатель скорости вращения двигателя в положение Ia, переключатель скорости вращения двигателя на 4 диапазон и кнопками 14 и 15 включить прибор. После 1-2 минут работы вискозиметра подобрать такую скорость вращения, при которой а достигает надежно измеримой величины. После установления стационарного значения усилия вращения записать в таблицу номер (N) включенной передачи и значения . Аналогичные измерения провести на других, последовательно увеличивающихся скоростях вращения, переходя при необходимости на диапазон II переключателя чувствительности силоизмерителя  $\delta$ . Вписать в таблицу значения  $\omega$ , D,  $\alpha$ иτ.

## Окончание прил. Г

При работе с высоковязкими, тиксотропными системами измерения следует начинать с диапазона IIb (переключатель 9 в положении I, переключатель 11 в положении b).

По окончании измерения установить переключатель 9 в положение 4, выключить двигатель и остановить его тогда, когда метка на видимой в прорези внешнего цилиндра узкой части 18 внутреннего цилиндра 5 окажется снаружи. Остановить двигатель, отжав кнопку 14. Затем, удерживая правой рукой внешний цилиндр, повернуть вправо до упора рычаг 16, приподнять муфту 19 и снять с прибора оба цилиндра.

Вымыть цилиндры или, в случае нерастворимых в воде систем, протереть их бумагой. Взяв внутренний цилиндр за широкую часть меткой к себе, приподнять муфту 19 и вставить внутренний цилиндр так, чтобы находящаяся под муфтой 19 риска совпала с меткой на цилиндре; отпустить муфту и потянуть цилиндр слегка вниз, так чтобы муфта защелкнулась, а цилиндр зафиксировался. Заполнить мерную чашечку новой жидкостью и провести измерения, как описано выше. По окончании работы вымыть и протереть досуха оба цилиндра, закрепить их на приборе и отключить прибор от сети.

# Приложение Д. Пример диаграммы измерений тепловых потоков и температуры

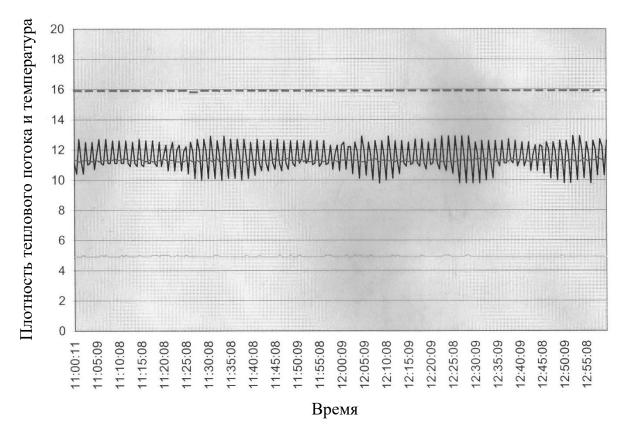



Рис. Д.1. Пример диаграммы измерений тепловых потоков и температуры:

|        |                                         | тепловой поток теплый:   |
|--------|-----------------------------------------|--------------------------|
| тепло- | *************************************** | вой поток холодный;      |
| темпе- | -                                       | ратура теплой пластины;  |
| темпе- |                                         | ратура холодной пластины |

### Протокол измерения теплопроводности

СПГУТД

Проба № 1 03 сент. 01 Дата:

Длительность измерения: 2 ч Измерительный цикл: 30 с

0.007 Высота [м]: 0.00036 Толшина слоя [м]:

Значение коэффициента теплопроводности

0.038 BT/m K

 $83,99 \text{ kg/m}^3$ Плотность Тепловой поток Коэффициент Температура теплопровод-Warmestrom **Temperatur** ности, теплая стотеплая стохолодная Дата Время холодная ВТ/м К рона, °С рона, Вт/м сторона, сторона, °С Среднее значение 0,0376 51,06 50,61 14,37 5,39 Стандартное отклонение  $\Delta q_T = 0.278$  $\Delta T_T = 0.044$  $\Delta Tx = 0.033$ Δλ  $\Delta qx = 0.062$ Отклонение W[%] -0.44 03.09.01 20:00:05 50,6 14,3 5,3 0,037535556 51 03.09.01 20:00:36 51.3 50.6 14.3 5,3 0.037646389 0.0375725 03.09.01 20:01:06 51.1 50,6 14.4 5.4 03.09.01 20:01:35 50.8 50,6 14,4 5,4 0,037461667 50,6 5.3 03.09.01 20:02:06 51 14.3 0.037535556 03.09.01 20:02:36 50,8 50,6 14,3 5,4 0.037882584 03.09.01 20:03:05 51,1 50,4 14,4 5,4 0,0374986111 03.09.01 20:03:35 50.7 50,6 14,4 5,4 0,037424722

51.4 50.6 14.4 5.4 03.09.01 20:04:05 0.037683333 03.09.01 20:04:35 50.7 50.6 14.4 5.4 0,037424722 03.09.01 20:05:05 51.3 50,6 14,4 5,4 0,037646389 20:05:36 51 50,6 14.4 5.4 0,037535556 03.09.01 03.09.01 20:06:06 51,1 50,6 14,3 5,3 0,0375725 03.09.01 20:06:36 50,6 0.037957303^ 51 14,3 5,4 03.09.01 20:07:05 51 50,6 14.4 5,4 0,037535556: 51.3 03.09.01 20:07:36 50,6 14,4 5,4 0,037646389 50.7 03.09.01 20:08:05 50.6 14.4 5.4 0,037424722^ 51,3 50,4 14,3 5,4 0,037994663 03.09.01 20:08:35 03.09.01 20:09:05 50.7 50,6 14.3 5.4 0.037845225 03.09.01 20:09:35 51,3 50,6 14,3 5,4 0.038069382 51,3 14,3 03.09.01 20:10:05 50,6 5,4 0.038069382 03.09.01 20:10:35 51 50,6 14,4 5,4 0,037535556 \ 51.1 03.09.01 20:11:05 50,6 14.4 5.4 0.0375725 03.09.01 20:11:36 50.8 50,6 14.3 5.4 0.037882584 03.09.01 20:12:05 51,3 50,4 14,4 5,4 0,0375725 03.09.01 20:12:35 50.5 50.4 14.4 5.4 0.037276944 03.09.01 20:13:05 50.4 14,3 5,4 0,037994663 51.3 5,4 0,037770506 20:13:36 50,7 50,4 14,3 03.09.01 03.09.01 20:14:06 51,3 50,6 14,3 5,3 0.037646389 03.09.01 20:14:35 50,8 50,6 14,4 5,4 0,037461667 51,3 03.09.01 20:15:06 50,6 14.3 5.4 0.038069382 03.09.01 20:15:35 51,3 50,6 14,3 5,4 0,038069382 03.09.01 20:16:05 50.7 50.4 14.3 5.4 0.037770506 03.09.01 20:16:35 51.3 50,6 14.3 5.4 0.038069382 03.09.01 20:17:05 50,7 50,6 14,3 5,4 0,037845225 0,038069382 20:17:36 51.3 50,6 14,3 5.4

# Приложение Е. Пример протокола измерения теплопроводности

# Приложение Ж. Форма протокола для расчета коэффициента теплопроводности

| Проба СПГУТД 2-сторонняя          | Проба СПГУТД 1-сторонняя          | Проба СПГУТД без АІ                              |
|-----------------------------------|-----------------------------------|--------------------------------------------------|
| Образец 1                         | Образец 1                         | Образец 1                                        |
| •Подготовка                       | •Подготовка                       | •Подготовка                                      |
| Использованные мембраны ПЭФ       |                                   | Использованные мембраны                          |
| 2 сторон. АІ покрытие; 10 + по-   | 1 сторон. АІ покрытие; 10 + по-   | ПЭФ без АІ покрытия; 10 + по-                    |
| кровный слой                      | кровный слой                      | кровный слой                                     |
|                                   | кровный слой                      | кровный слой                                     |
| Масса: 24,3 г                     | Масса: 22,63 г                    | Масса: 23,09 г                                   |
| •Измерение                        | • Измерение                       | • Измерение                                      |
| Дата                              | Дата                              | Дата:                                            |
| Исполнитель:                      | Исполнитель:                      | Исполнитель:                                     |
| Расположение определенное         | Расположение определенное         | Расположение определенное                        |
| Высота без нагружения мм          | Высота без нагружения мм          | Высота без нагружения мм                         |
| Высота при измерении мм           | Высота при измерении мм           | Высота при измерении мм                          |
| • Результаты                      | • Результаты                      | • Результаты                                     |
| Плотность: кг/м <sup>3</sup>      | Плотность: кг/м <sup>3</sup>      | Плотность: кг/м <sup>3</sup>                     |
| Коэфф. теплопровод. Вт/м К        | Коэфф. теплопровод. Вт/м К        | Коэфф. теплопровод. Вт/м                         |
| • Измерение                       | • Измерение                       | • Измерение                                      |
| Дата: 26.03.99                    | Дата: 29.03.99                    | Дата: 30.03.99                                   |
| Исполнители: Do / Lob             | Исполнитель: Freud                | Исполнители: Do / Lob                            |
| Расположение: стохастическое      | Расположение: стохастическое      | Расположение: стохастиче-                        |
| Тасположение. Стохастическое      | п асположение. Стохастическое     | ское                                             |
| Высота без нагружения 29 мм       | Высота без нагружения 29 мм       | Высота без нагружения 26 мм                      |
| Высота при измерении 26мм         | Высота при измерении 26мм         | Высота при измерении 23мм                        |
| : 26 mm                           |                                   |                                                  |
| • Результаты                      | • Результаты                      | • Результаты                                     |
| Плотность:10,38 кг/м <sup>3</sup> | Плотность: 9,67 кг/м <sup>3</sup> | Плотность: 11,15 кг/м <sup>3</sup>               |
|                                   | Коэфф. теплопров: 0,0286 Вт/м К   |                                                  |
| Образец 2                         | Образец 2                         | Образец 2                                        |
| •Подготовка                       | •Подготовка                       | •Подготовка                                      |
| Использованные мембраны           | Использованные мембраны           | Использованные мембраны                          |
| Масса: г                          | Масса: г                          | Масса: г                                         |
| • Измерение                       | • Измерение                       | • Измерение                                      |
| Дата                              | Дата                              | Дата                                             |
| Исполнитель                       | Исполнитель                       | Исполнитель                                      |
| Расположение определенное         | Расположение определенное         | Расположение определенное                        |
| Высота без нагружения мм          | Высота без нагружения, мм         | Высота без нагружения, мм                        |
| Высота при измерении мм           | Высота при измерении, мм          | Высота при измерении мм                          |
| • Результаты                      | • Результаты                      | • Результаты                                     |
| Плотность: кг/м <sup>3</sup>      | Плотность: кг/м <sup>3</sup>      | Плотность: кг/м <sup>3</sup>                     |
| Коэфф. теплопровод. Вт/м К        | Коэфф. теплопровод. Вт/м К        | Коэфф. теплопровод. Вт/м К                       |
| • Измерение                       | • Измерение                       | • Измерение                                      |
| Дата                              | Дата                              | Дата                                             |
| Исполнитель                       | Исполнитель                       | Исполнитель                                      |
| Расположение: стохастическое      | Расположение: стохастическое      | Расположение: <b>стохастиче</b> -<br><b>ское</b> |
| Высота без нагружения мм          | Высота без нагружения мм          | Высота без нагружения мм                         |
| Высота при измерении мм           | Высота при измерении мм           | Высота при измерении мм                          |
| • Результаты                      | • Результаты                      | • Результаты                                     |
| Плотность: кг/м <sup>3</sup>      | Плотность: кг/м <sup>3</sup>      | Плотность: кг/м <sup>3</sup>                     |
| Коэфф. теплопровод. Вт/м К        | Коэфф. теплопровод. Вт/м К        | Коэфф. теплопровод. Вт/м К                       |
| _                                 | Примечание                        | Примечание                                       |
| Примечание                        |                                   |                                                  |

# Приложение И. Методика работы и описание прибора Виртестер FF-21

Виртестер представляет собой универсальный прибор для испытания текстильных полотен на истирание, в котором истирание по плоскости производится относительным смещением друг на друге двух плоских поверхностей при заданном давлении прижима. Обычно давление производит истираемый образец, а абразив неподвижен. В специальных случаях испытуемый образец и абразив меняются местами. Схема прибора приведена на рис. И.1.

Прибор снабжён тремя одновременно действующими истирающими головками, которые состоят из верхних зажимных устройств с изменяемой нагрузкой и нижних зажимных устройств, расположенных на общем столе. В корпусе прибора расположены: механизм истирающего стола, электроарматура, пылесос и ящик для хранения принадлежностей.

Нижние зажимные устройства, производящие движение, фиксированы на опорных кольцах, расположенных на общем столе, таким образом, чтобы они были сменяемы. Испытуемый образец укладывают на круглый столик с войлочной подушкой. Он прижимается к столику зажимной рамой, имеющей форму кольца.

Верхние зажимные устройства неподвижны, они фиксированы на цапфах вертикальных стержней нагрузочных устройств при помощи прижимных рычагов. Плита общего стола вместе с нижними зажимными устройствами движется горизонтально в двух направлениях: параллельно и перпендикулярно рабочему столу (соответственно направления x и y).

Механизм привода позволяет сообщать плите следующие варианты движений:

- прямое альтернативное движение во взаимно перпендикулярных направлениях;
  - круговое движение;
- сложное движение по всей плоскости, получаемое комбинацией двух взаимно перпендикулярных альтернативных движений, отличающихся частотой.

Параметры истирающего воздействия регулируются посредством давления на образец при истирании, натяжением пробы, видом истирающего движения. Оценку стойкости к истиранию можно осуществлять:

- визуально по изменению внешнего вида поверхности образца;
- временем, которое выдерживает образец до полного износа;
- относительным изменением прочностных показателей текстильного материала;
- относительным изменением массы или толщины пробы после заданного числа циклов истирания.

### Продолжение прил. И

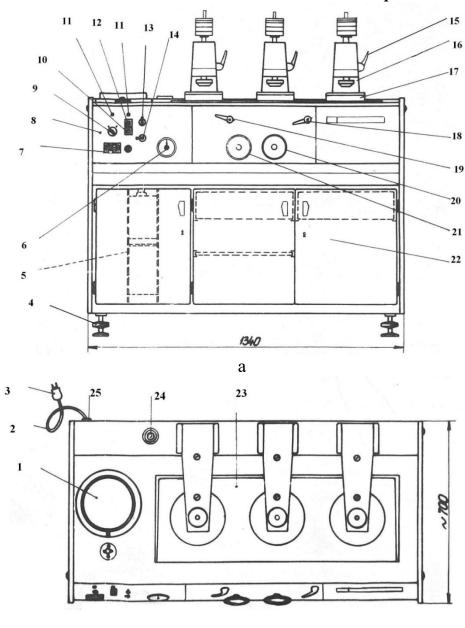



Рис. И.1. Схема прибора Виртестер FF-21: a — фронтальный вид;  $\delta$  — вид сверху: 1 — решётка подготовительного стола; 2 — гибкий кабель; 3 — сетевой штепсель; 4 — подножки нивелира; 5 — люлька пылесоса; 6 — часовой механизм; 7 — главный предохранитель; 8 — панель управления; 9 — главный переключатель; 10 — кнопка останова привода; 11 — сигнальные лампы; 12 — пусковая кнопка; 13 — выключатель пылесоса; 14 — переключатель; 15 — рычаг разгрузки; 16 — верхняя зажимная головка;

б

17 — нижнее зажимное устройство; 18 — рычаг переключения частоты циклов истирания; 19 — рычаг привода; 20 — маховик направления (xy); 21 — маховик направления (xx); 22 — шкаф; 23 — подвижный стол; 24 — клинометр;

25 – корпус прибора

Исполнение привода даёт возможность для ручного движения стола в любое исходное положение в выключенном состоянии прибора с помощью маховиков. Давление верхних зажимных устройств осуществляется устройствами весовой нагрузки с противовесами. Разгрузку осуществляют поворачиванием разгрузочного рычага вверх.

Пылесос, встроенный в прибор, служит для расправления испытуемых образцов на подготовительном столе, их обеспыливания перед испытанием, а также для удаления угаров, образующихся при испытаниях.

Нивелировка прибора по горизонтали осуществляется с помощью подножек и клинометра.

Технические данные прибора Габариты, мм:

| Tuespiribi, mini                                       |                                       |
|--------------------------------------------------------|---------------------------------------|
| ширина                                                 | 1340                                  |
| высота                                                 | 1350                                  |
| глубина                                                |                                       |
| Число истирающих узлов, шт                             | 3                                     |
| Диаметр верхней зажимной головки, мм                   |                                       |
| Размер истираемого участка на образце, мм:             |                                       |
| – при истирании круговым движением                     | диаметр 150                           |
| – при истирании сложным движением                      | 150 x 150                             |
| Диаметр испытуемого образца, мм                        | 245                                   |
| Частота циклов истирания:                              |                                       |
| <ul><li>– в направлениях <i>x</i> и <i>y</i></li></ul> | $30$ мин $^{-1}$ или $60$ мин $^{-1}$ |
| – при круговом движении                                | $\dots x = y$                         |
| – при сетевом движении                                 | x = 107y / 93 = 1,15053 y             |
| Диапазон применяемой нагрузки, гс                      | 50–2500 с шагом 50                    |
| Точность нагрузки, гс                                  | $50-500 \pm 10$                       |
|                                                        | $500-2500 \pm 2\%$                    |
| Регулируемая длительность истирания, мин               | от 1 до 60                            |
| Питание прибора от сети 220 В                          | 50 Герц                               |
|                                                        |                                       |

Таблица К.1. Значения относительных оптических плотностей i-х полос поглощения ( $\mathbf{D_i}$  /  $\mathbf{D_{2880}}$ )

| Номер   | Drug of googs                                       | Волновое число і |      |      |      |      |      |      |     |     |
|---------|-----------------------------------------------------|------------------|------|------|------|------|------|------|-----|-----|
| образца | Вид образца                                         | 2960             | 1740 | 1260 | 1200 | 1170 | 1120 | 1070 | 980 | 840 |
| 1       | МБМ-3                                               | 2.9              | 10.8 | 3.7  | 4.3  | 7.0  | 2.0  | 1.5  | 0.8 | 0.7 |
| 2*      | МБМ-3                                               | 2.8              | 10.4 | 3.4  | 3.9  | 6.5  | 1.5  | 1.5  | 0.7 | 0.7 |
| 3       | MБM-3 + Акрэмос 402                                 | 2.8              | 7.3  | 3.4  | 3.9  | 5.6  | 1.6  | 1.1  | 0.7 | 0.7 |
| 4*      | MБM-3 + Акрэмос 402                                 | 2.7              | 7.4  | 3.0  | 3.6  | 5.5  | 1.5  | 1.1  | 0.7 | 0.7 |
| 5       | МБМ-3 + Акрэмос 402 + триамон                       | 2.6              | 7.3  | 3.1  | 3.6  | 5.1  | 1.4  | 1.1  | 0.6 | 0.6 |
| 6*      | МБМ-3 + Акрэмос 402 + триамон                       | 3.2              | 12.5 | 4.02 | 4.9  | 7.9  | 2.0  | 1.5  | 0.7 | 0.7 |
| 7       | МБМ-3 + Акрэмос 402 + неонол АФ                     | 2.5              | 6.0  | 2.8  | 3.4  | 4.6  | 1.5  | 1.1  | 0.7 | 0.8 |
|         | 9–10                                                |                  |      |      |      |      |      |      |     |     |
| 8*      | МБМ-3 + Акрэмос 402 + неонол АФ                     | 2.5              | 6.0  | 2.7  | 3.1  | 4.1  | 1.4  | 1.1  | 0.7 | 0.7 |
|         | 9–10                                                |                  |      |      |      |      |      |      |     |     |
| 9*      | МБМ-3 + Акрэмос 402 + триамон +<br>+ неонол АФ 9-10 | 2.9              | 10.7 | 3.5  | 4.1  | 6.7  | 1.7  | 1.2  | 0.5 | 0.6 |
| 10      | МБМ–3 + Акрэмос 402 + 25 %-й раствор аммиака        | 2.7              | _    | 3.2  | 3.6  | 5.7  | 1.5  | 1.1  | 0.7 | 0.7 |
| *       | МБМ–3 + Акрэмос 402 + 25 %-й рас-                   |                  |      |      |      |      |      |      |     |     |
| 11*     | твор аммиака                                        | 2.5              | _    | 2.8  | 3.1  | 4.2  | 1.4  | 1.1  | 0.6 | 0.7 |
| 12      | МБМ-3 + Акрэмос 402 + 25 %-й рас-                   | 2.7              | 6.4  | 3.2  | 3.7  | 5.4  | 1.5  | 1.2  | 0.7 | 0.7 |
| 12      | твор аммиака + неонол АФ 9–10                       | 2.1              | 0.4  | 3.2  | 3.7  | 3.4  | 1.3  | 1.2  | 0.7 | 0.7 |
| 13*     | МБМ-3 + Акрэмос 402 + 25 %-й рас-                   | 2.6              | 7.1  | 3.0  | 3.4  | 5.3  | 1.4  | 1.1  | 0.6 | 0.7 |
| 13      | твор аммиака + неонол АФ 9–10                       | 2.0              | /.1  | 3.0  | 3.4  | 3.3  | 1.4  | 1.1  | 0.0 | 0.7 |

 $<sup>^{\</sup>ast}$  Пленки, подвергнутые термообработке при 140 °C в течение 15 мин

# Технологическая схема линии для производства велюровых обоев

Цифрами на рисунке обозначены:

- 1. Обойная бумага (диаметром до 1200 мм, шириной 550 мм).
- 2. Натяжное и разматывающее устройство для обойной бумаги.
- 3. Узел подачи бумаги с компенсатором (без натяжения).
- 4. Привод к узлам 3 и 5.
- 5. Узел краско- и клеепечати, максимально три цвета «мокрый по мокрому».
- 6. Пульт управления.
- 7. Высоковольтный источник питания для электрофлокирования.
- 8. Вакуумообразующее устройство для транспортировки бумаги.
- 9. Вакуумный стол с приводом для транспортировки бумаги.
- 10. Флокатор с автоматической подачей ворса.
- 11. Узел очистки (для удаления излишков ворса).
- 12. Туннельная сушилка.
- 13. Датчик для измерения влажности.
- 14. Оттяжное устройство для бумаги.
- 15. Подача бумаги с компенсатором.
- 16. Устройство для обрезания кромок с двух сторон.
- 17. Узел пневмоотсоса обрезанных кромок.
- 18. Тиснильные валы.
- 19. Подача бумаги с компенсатором.
- 20. Компрессор.
- 21. Полуфабрикат: большой рулон бумаги, прошедший предварительную печать.
  - 22. Вакуумообразующее устройство для транспортировки волокон.
  - 23. Автомат для разрезания рулонов обоев.
  - 24. Поворотное устройство для обойной бумаги.

Для работы линии нужны следующие условия в рабочем помещении: температура воздуха  $15{\text -}30$  °C, относительная влажность воздуха  $65{\text -}70$  %, содержание пыли — не более 3 г/м<sup>3</sup>. Основные технические характеристики линии для производства велюровых обоев:

| Потребляемая мощность, кВт         | 85                  |
|------------------------------------|---------------------|
| Напряжение                         | 3×220/380 В (50 Гц) |
| Расход воды, л/сутки               |                     |
| Давление воды, $\kappa \Pi a/cm^2$ | 4                   |
| Сечение трубы, мм (не менее)       | 25                  |
| Производительность, рулонов в год  |                     |
| $(при печати в два прохода)^*$     | 250000              |
| Длина рулона, м                    | 10                  |
| Ширина рулона,                     | м                   |

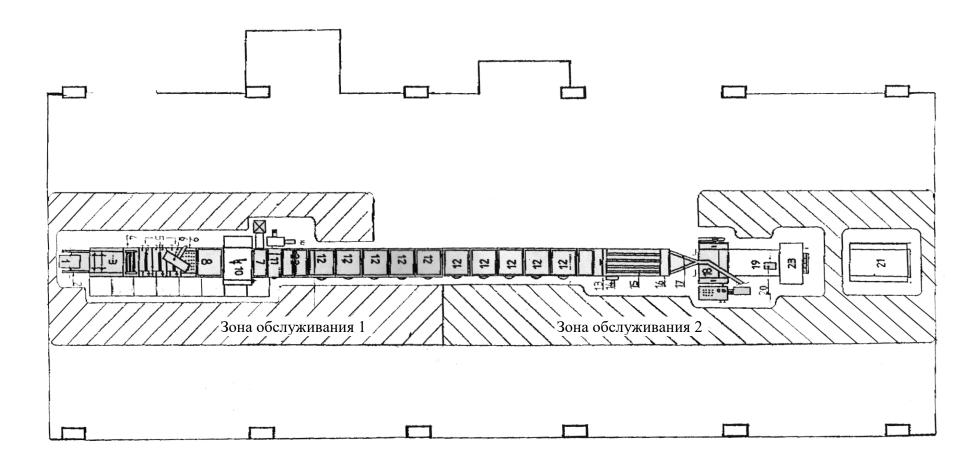
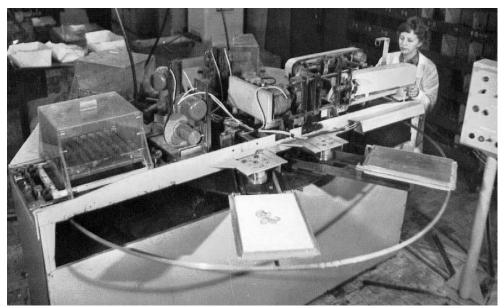




Рис. Л.1. Технологическая схема линии по производству велюровых обоев

# Приложение М. Комплекс автоматизированного оборудования для многоцветной печати ворсом

Установка для нанесения флокированных рисунков ОТ–577 карусельного типа предназначена для одно- и трехцветного флокирования, а также для комбинированной печати красками и ворсом. Она имеет шесть печатных столов, один или более узлов печати, дозаторы для подачи ворса. Машина может работать в автоматическом режиме и режиме ручного управления. Имеется программное управление для задания количества проходов ракли от 1 до 4 (проходом ракли называется два ее хода: «туда» и «обратно»), времени



флокирования.

Рис. М.1. Общий вид установки для многоцветного флокирования ОТ-577

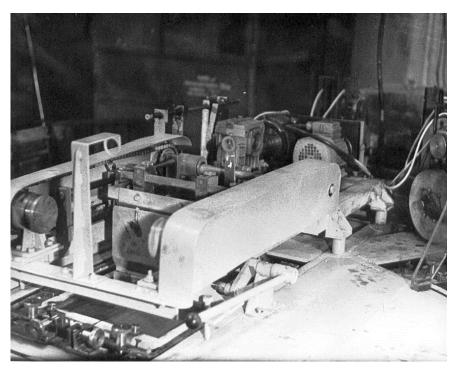
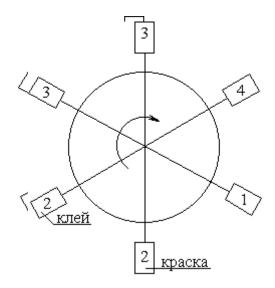


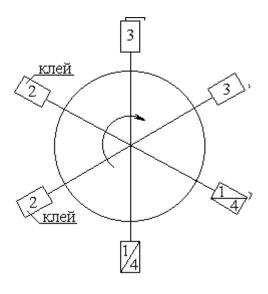

Рис. М.2. Узел печати установки ОТ-577

# Продолжение прил. М

| Основные технические данные установ            | вки <i>ОТ</i> –577           |
|------------------------------------------------|------------------------------|
| Габариты, мм: диаметр                          | . 2530                       |
| высота                                         | . 1700                       |
| Скорость движения ракли, м/с                   | . 0.35                       |
| Ход ракли, мм                                  | . 100; 200 или 300           |
| Размеры шаблонов, мм                           | . 420 × 300                  |
| Максимальный размер рисунка, мм                | 260 × 240                    |
| Зона обслуживания                              | 1 человек                    |
| Габариты шкафа автоматики, мм                  | $900\times500\times1500$     |
| Габариты пульта управления, мм                 | $500 \times 400 \times 1500$ |
| Тип источника высокого напряжения              | . ПВС-63-0.5                 |
| Количество источников высокого напряжения      | 3                            |
| Номинальное выпрямительное напряжение, кВ      | 63                           |
| Габариты источника ПВС-63-0.5, мм              | $200\times320\times435$      |
| Производительность установки, шт./ч:           |                              |
| <ul><li>при трехцветном флокировании</li></ul> | . 70–100                     |
| <ul><li>при одноцветном флокировании</li></ul> | . 130–220                    |
|                                                |                              |


Сушилка Л208–84БУ — конвейерного типа с трубчатыми электронагревателями, предназначена для сушки и термофиксации флокированных рисунков на деталях кроя:

| Скорость конвейера, м/с                          | 0.004-0.024 |
|--------------------------------------------------|-------------|
| Производительность, шт./ч при скорости 0.005 м/с | 72          |
| Время нахождения заготовки в сушилке             |             |
| (регулируется скоростью конвейера), мин          | 5÷20        |


| Диапазон регулирования температуры в сушилке, °С | 50÷200 |
|--------------------------------------------------|--------|
| Габариты, мм: длина                              | 6100   |
| ширина                                           | 1550   |
| высота                                           | 1200   |

Установка для аэромеханической очистки флокированных рисунков ОТ-578 предназначена для очистки флокированных рисунков от не закрепившегося ворса. Очистка осуществляется с помощью вращающейся цилиндрической щетки и отсоса ворса с помощью вентилятора.

| Производительность установки, изделий/ч                         | 450  |
|-----------------------------------------------------------------|------|
| Частота вращения рабочего колеса вентилятора, мин <sup>-1</sup> | 3000 |
| Габаритные размеры, мм: длина                                   |      |
| ширина                                                          | 700  |
| высота                                                          | 1200 |



а) трехцветное флокирование



б) печать краской в один цвет и двухцветное флокирование

- в) печать краской в два цвета и одноцветное флокирование
- г) одноцветное флокирование с удвоенной производительностью

Рис. М.3. Схемы работы установки для печати и флокирования: 1 – загрузка заготовок; 2 – узел печати; 3 – флокатор; 4 – съем готовых изделий

В зависимости от вида изделия или рисунка, выбранного для отделки, установку для флокирования штучных изделий можно использовать в разных режимах: для печати ворсом в один, два или три цвета, а также для комбинированной печати красками и ворсом. Установка комплектуется по желанию заказчика соответствующим количеством узлов печати и флокаторов, которые монтируются на станине в необходимой конфигурации. Пояснения приведены на  $puc.\ M.3$ .

# Приложение Н. Установка для флокированных штучных изделий УНФ-1

Установка состоит из следующих частей:

Поворотная платформа с шестью печатными столами размером  $350 \times 350$  мм. Платформа поворачивается в каждом цикле на угол  $60^{\circ}$  или  $120^{\circ}$ . Время поворота — 3–5 секунд. Положение стола должно быть четко зафиксировано по отношению к станине. Крепление изделий на столах производится с помощью рамок с резиновыми манжетами (*puc. H.1*).

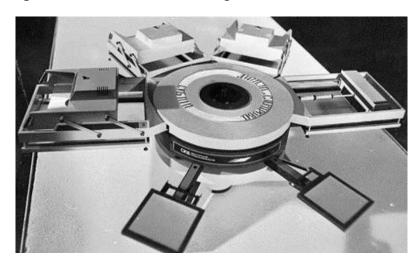
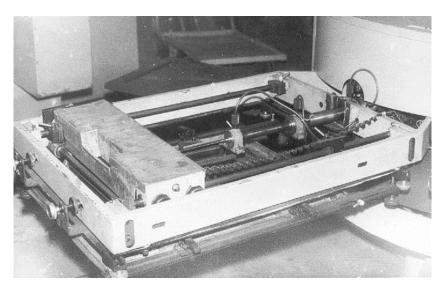




Рис. Н.1. Макет установки для флокирования штучных изделий УНФ-1

<u>Клеенаноситель (узел печати)</u> (рис. Н.2) служит для нанесения клея на текстильную основу в соответствии с рисунком через сетчатый шаблон. Он состоит из механизма подачи клея и механизма раклей. Клей подается в зону между раклями порциями. Механизм раклей обеспечивает их движение с заданным размахом и числом ходов. Шаблон под клеенаносителем должен легко сниматься и затем устанавливаться в прежнее положение с помощью фиксаторов.



# Рис. Н.2. Внешний вид клеенаносителя установки УНФ-1

# Продолжение прил. Н

| Основные характеристики клеенаносителя:   |                     |
|-------------------------------------------|---------------------|
| Масса клея на 1 образец, г                | 2–3                 |
| Длина ракельного ножа, мм                 | 320                 |
| Размах движений ракельного ножа, мм       | 320                 |
| Число полных ходов ракельного ножа        | 2                   |
| Регулировка по высоте ракельного ножа, мм | (0–10)±0.05         |
| Угол наклона ракельного ножа, град        | $\dots(45-60)\pm 1$ |

<u>Флокатор</u> обеспечивает подачу ворса порядка  $2 \text{ г/м}^2 \cdot \text{с}$  и создает электрическое поле между электродом флокатора и заземленным столом для печати. Электрод флокатора представляет собой круглую перфорированную металлическую пластину диаметром 350 мм. Подача ворса осуществляется в течение двух часов без загрузки двумя торцевыми протирочными щетками с частотой вращения порядка  $20\text{--}40 \text{ мин}^{-1}$ . Между изделием и флокатором устанавливается шаблон, соответствующий рисунку. Зазор между шаблоном и печатным столом регулируется в пределах 0.5--2.0 мм. Обеспечивается регулировка шаблона относительно флокатора и станины в пределах  $(0\text{--}20)\pm0.1 \text{ мм}$  по осям ординат.

| Основные характеристики флокатора:               |       |
|--------------------------------------------------|-------|
| Длительность единичного флокирования, с          | 10–30 |
| Диаметр электрода флокатора, мм                  | . 320 |
| Напряжение, подводимое к электроду флокатора, кВ | 60–90 |
| Расстояние от электрода флокатора до стола, мм   | .100  |

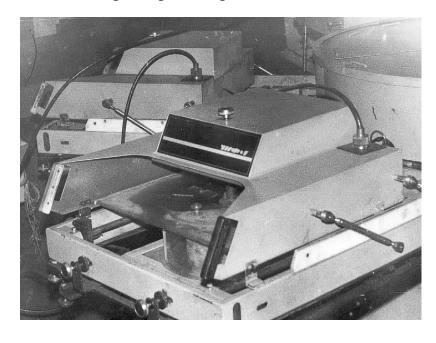



Рис. Н.3. Флокатор установки УНФ-1

## Продолжение прил. Н

Сушильная камера — шкаф предназначена для сушки и термофиксации флокированных рисунков с помощью электронагревателей. Флокированные изделия накапливают на стеллаже — тележке с откидными сетчатыми полками. Заполненную тележку закатывают в сушильный шкаф и проводят сушку в заданном режиме.

При достижении заданной температуры таймером устанавливается время сушки. По окончании заданного времени подается звуковой сигнал (звонок).

**Устройство аэромеханической очистки** предназначено для очистки изделий от излишков ворса. Очистка осуществляется с помощью вентилятора мощностью порядка 1 кВт.

Установка УНФ-1 комплектуется тремя источниками высокого напряжения (по одному на каждый флокатор) и имеет выносной пульт управления, с которого можно привести в действие клеенаноситель, флокаторы, печатные столы. Подача ворса и время флокирования регулируются на отдельных пультах управления рядом с источниками высокого напряжения. Для обеспечения высокого качества флокирования рекомендуется либо отключать источник от флокатора по высокому напряжению, совместив это отключение с опусканием печатного стола (для быстрой разрядки флокатора при этом параллельно его электродам должно быть подключено сопротивление порядка 1000 МОм, мощностью 5 Вт), либо на время поворота стола экранировать шаблон от высоковольтного электрода.

<u>Устройство управления</u> предназначено для реализации заданного алгоритма работы установки флокирования в двух режимах: а) в темпе машины; б) в темпе оператора. Переход из одного режима в другой должен производиться с помощью переключателя на лицевой панели пульта управления.

Перечень команд при работе в темпе машины (см. рис. Н.4.):

- 1. Пуск привода платформы с целью развернуть её на требуемый угол.
- 2. Останов привода поворота при достижении платформой заданного угла поворота.
- 3. Пуск привода подъема / спуска платформы для подъема ее на заданную высоту.
- 4. Останов привода подъема / спуска при достижении заданной высоты подъема.
  - 5. Включение привода ракли.
  - 6. Счет числа проходов ракельного устройства.

## Продолжение прил. Н

- 7. Выключение привода ракли после заданного числа проходов (число проходов от 1 до 6 задается на лицевой панели пульта управления с помощью переключателя).
  - 8. Включение высокого напряжения.
  - 9. Включение привода подачи ворса.
  - 10. Пуск таймера флокирования.
- 11. Выключение привода подачи ворса при достижении заданного времени флокирования (время флокирования задается с помощью переключателя на лицевой панели пульта управления в пределах от 10 до 30 секунд).
  - 12. Выключение высокого напряжения.
  - 13. Обеспечение работы таймера в режиме счета.
- 14. Выключение механизма, фиксирующего положение столов на платформе.
- 15. Пуск привода подъема / спуска с целью опустить платформу в исходное положение.
- 16. Останов привода подъема / спуска при достижении платформой исходного положения.
  - 17. Одновременное выполнение п. 5 и 9.
  - 18. Разрешение на выполнение п. 14 при условии выполнения п. 7 и 11.
  - 19. Выполнение п. 1 сразу после выполнения п. 16.

При работе машины в темпе оператора устройство управления после выполнения п. 16 находится в ожидании команды от оператора на запуск следующего цикла работы. Устройство управления предусматривает также ручной пуск и останов привода ракли и привода подачи ворса; автоматическую установку всех узлов устройства управления в исходное состояние при включении источника питания. Схема устройства управления приведена на *рис*. *Н.4*.

# Окончание прил. Н

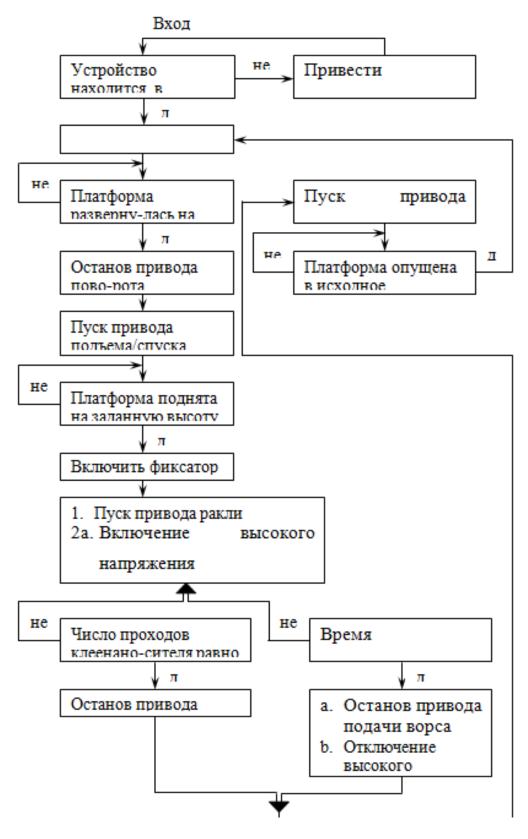



Рис. Н.4. Схема устройства управления установкой УНФ-1

# Приложение П. Установка для одноцветного флокирования и сушки УФС-1

Установка ( $puc.\ \Pi.1,\ \Pi.2$ ) состоит из станины 13, на которой установлены держатель клеепечатного шаблона 15, флокатор 10 и сушилка 9, и поворотной платформы 1 с тремя печатными столами 3.

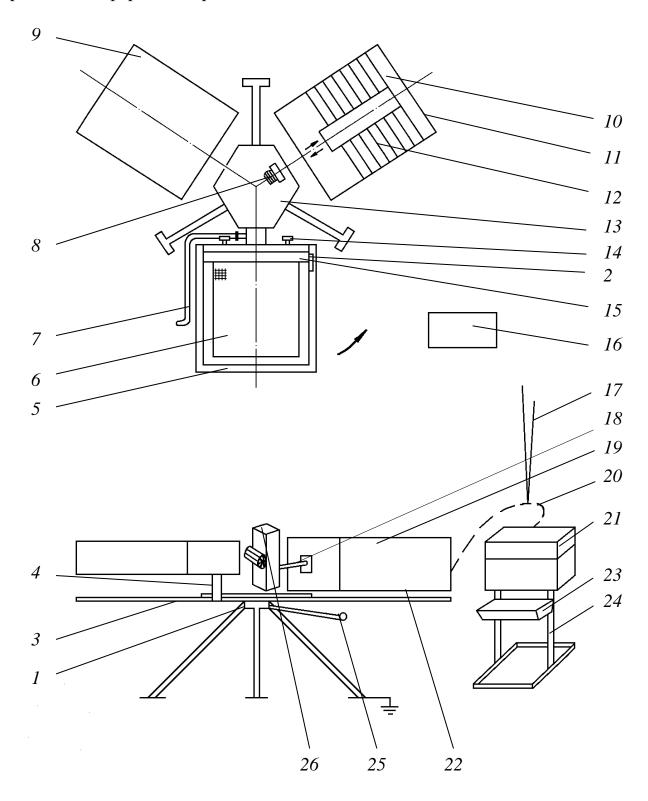



Рис. П.1. Схема установки для одноцветного флокирования и сушки

#### текстильных изделий УФС-1

# Продолжение прил. П

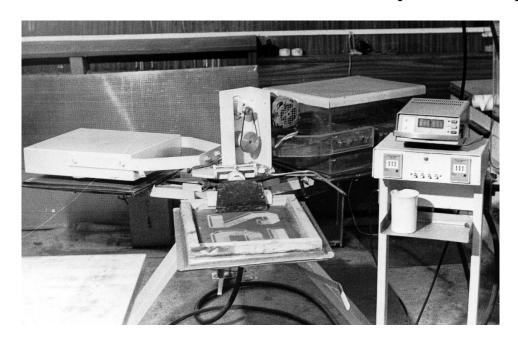



Рис. П.2. Установка УФС-1

Столы расположены горизонтально на одном уровне. Их поворот осуществляют вручную на 120 градусов вправо в каждом цикле нажатием на рычаг 25. Положение столов относительно станины фиксируется после поворота платформы на заданный угол. Держатель клеепечатного шаблона с помощью винтов 14 обеспечивает равномерное прилегание сетки шаблона 6 к печатаемой поверхности без зазора и жесткую фиксацию шаблона по отношению к столу в процессе печати, чтобы избежать смещения его по осям координат. Поднимают и опускают шаблон вручную. Поднятый шаблон удерживается под углом к плоскости печатного стола. Опускают шаблон, слегка отжав вправо рычаг 7. Крепление текстильных заготовок на столе производят с помощью пяльцев 5 с обжимными эластичными манжетами. При укладывании текстильной заготовки на печатный стол пяльца, так же как шаблон, удерживаются под углом к плоскости стола. Для опускания пяльцев нужно, придерживая их правой рукой, левой слегка потянуть на себя рычаг 2, находящийся под каждым печатным столом.

Флокатор предназначен для равномерного нанесения ворса на печатаемую поверхность. Он представляет собой корпус 19 из оргстекла, дном которого является высоковольтный металлический электрод 22. Электрод выполнен из перфорированной алюминиевой пластины. Он может быть выдвинут из бункера для очистки последнего при замене ворса. Подача ворса через отверстия электрода на материал осуществляется параллельно закрепленными на рамке щетками 12, совершающими возвратно-поступательное движение в горизонтальной плоскости.

Рамка, на которой закреплены щетки связана с водилом 18, которое закреплено на валу редуктора 26. Ведущий вал редуктора получает движение от электродвигателя 8. Для подсоединения высоковольтного кабеля 20 от источника высокого напряжения 21 в корпусе флокатора предусмотрено гнездо 11. Для облегчения замены ворса во флокаторе и его очистки, а также замены электрода в корпусе флокатора предусмотрена съемная планка. Инфракрасная сушилка представляет собой укрепленный на станине термоизолированный кожух, внутри которого вмонтированы кварцевые галогенные ИК-лампы типа КГ-220-1000.

Кварцевые излучатели отличаются малыми габаритами при высокой линейной и поверхностной удельной нагрузке оболочки, большим сроком службы и возможностью регулирования мощности. Можно также выгибать трубку, придавая ей любую форму.

По конструкции и связанным с ней рабочим параметрам кварцевые трубчатые излучатели разделяют на две категории: с телами накала из металлических резистивных сплавов и телами накала из вольфрама.

В устройстве применены излучатели с вольфрамовым телом накала. Они имеют следующую конструкцию (рис. П.3). Тело накала, имеющее форму простой спирали, продето через отверстие подпорок из молибдена в виде дисков, опирающихся на внутреннюю поверхность прозрачной трубки из кварцевого стекла. Электроды тела накала изготовлены из молибденовой проволоки и соединяются с вводом, который обычно выполнен из молибденовой фольги, впаянной в кварцевое стекло. К фольге прикрепляется молибденовый или никелевый провод, который, в свою очередь, соединяется с цоколем. Цоколь может быть изготовлен также из никеля. Из трубки откачивают воздух, и она заполняется газом, чаще всего аргоном с добавкой йода. Трубчатые кварцевые излучатели этого типа неразборные.

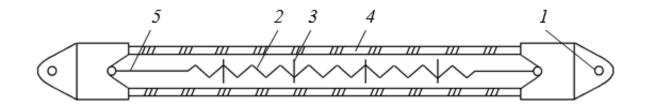



Рис. П.3 — Схема кварцевого излучателя с вольфрамовым телом накала: 1 — кронштейн, 2 — тело накала, 3 — держатель, 4 — стеклянная трубка, 5 — провод, соединяемый с цоколем

Температура тела накала доходит до 2800 K, а максимум излучения соответствует длине волны 1 мкм. Температура никелевого цоколя не должна

превышать 300 °C. В связи с этим рекомендуется охлаждение излучателя во время работы.

# Продолжение прил. П

Пульт управления установкой 16 смонтирован на стойках 24 вместе с источником высокого напряжения 21 и поддоном 23 для емкости с клеем.

На пульте управления задают время сушки и флокирования. Схема лицевой панели пульта управления приведена на *рис. П.4*. Включение привода щеток и сушилки осуществляется с помощью контактного включателя при повороте платформы на заданный угол.

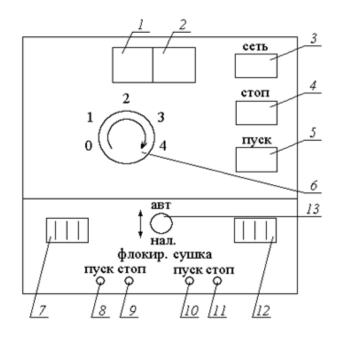



Рис. П.4. Схема лицевой панели пульта управления:

1 – индикатор напряжения на высоковольтном электроде;

- 2 индикатор тока; 3 кнопка подключения высоковольтного блока к электросети; 4 кнопка отключения высокого напряжения;
- 5 кнопка включения высокого напряжения; 6 ручка регулировки высокого напряжения; 7 реле установки времени флокирования;
- 8, 9 кнопки включения и выключения подачи ворса в ручном режиме;
- 10, 11 кнопки включения и выключения сушилки в ручном режиме;
- 12 реле установки времени сушки; 13 тумблер переключения режимов

| Основные технические данные установки $У\Phi C-I$ : |                  |
|-----------------------------------------------------|------------------|
| Количество печатных столов, шт                      | 3                |
| Размер печатного стола, мм                          | $400 \times 500$ |
| Расстояние между высоковольтным и заземленным       |                  |
| электродами флокатора, мм                           | 100              |
| Потребляемая мощность, кВт: сушилки                 | 3                |
| привода щеток                                       | 0.37             |
|                                                     |                  |

## Продолжение прил. П

| Габариты, мм: диаметр                                     |
|-----------------------------------------------------------|
| высота 900                                                |
| Пределы регулирования времени флокирования, с от 1 до 999 |
| Точность регулирования времени флокирования, с1           |
| Пределы регулирования времени сушки, с от 1 до 999        |
| Точность регулирования времени сушки, с                   |
| Рабочее напряжение, плавно регулируемое, кВ 0÷100         |
| Диаметр перфорации пластины электрода, мм1.5              |
| Плотность перфорации, меш (отверстий на 1 дюйм)8          |
| Частота движения щеток, мин <sup>-1</sup>                 |
| Амплитуда движения щеток, мм                              |
| Расстояние между ИК-лампами и печатным                    |
| столом, мм80                                              |

Установка укомплектована источником высокого напряжения на базе рентгеновского излучателя РЕИС–100, технические данные которого позволяют использовать его в модифицированном виде в качестве источника высокого напряжения для электрофлокирования. Аппарат РЕИС–100 модифицирован таким образом, что не является источником рентгеновского излучения и не представляет опасности для здоровья работающего.

Основные технические данные источника высокого напряжения:

# Порядок работы на установке

Установка может работать: 1) в режиме наладки и 2) в полуавтоматическом режиме, когда время флокирования и сушки постоянно. Для работы в режиме наладки тумблер 13 (рис.  $\Pi.4$ ) опускают вниз, для работы в автоматическом режиме его поднимают вверх. Если необходимо работать без флокатора, то время флокирования на реле 7 устанавливают на нуль, а водило 18 см (рис.  $\Pi.1$ ) отсоединяют от вала редуктора, и флокатор очищают от ворса.

# Перед началом работы:

- 1) подключить установку к электросети 380 В;
- 2) проверить исправность пульта управления и источника высокого напряжения;
  - 3) обеспечить чистоту поверхности печатных столов;
  - 4) приготовить клей и засыпать ворс во флокатор;
  - 5) включить вытяжную вентиляцию.

Во время работы:

1) закрепить с помощью винтов 14 см ( $puc.~\Pi.1$ ) печатный шаблон в держателе 15 и поднять его за переднюю планку вверх до щелчка;

# Окончание прил. П

- 2) установить на пульте управления время флокирования (10–30 секунд, в зависимости от ворса) реле 7 и время сушки (10–40 секунд, в зависимости от печатаемой основы) реле 12 ( $puc. \Pi.4$ );
- 3) включить кнопки «сеть» и «пуск» на пульте управления источником высокого напряжения (3 и 5 на  $puc.\ \Pi.4$ ), затем ручкой 6 установить напряжение между электродами 45–50 кВ по индикатору 1.
  - 4) поднять пяльца вверх за переднюю планку;
- 5) на печатный стол уложить заготовку и зажать пяльцами, опустив их (на заготовке не должно быть морщин, складок, волокнистых узелков и загрязнений), для чего ручку под печатным столом потянуть на себя;
  - 6) опустить на заготовку шаблон, отжав вправо ручку 7;
  - 7) налить клей на шаблон;
  - 8) отпечатать рисунок клеем с помощью ручной ракли;
  - 9) поднять шаблон.
- 10) нажав на рукоятку 25, повернуть печатные столы на 120 градусов вправо. При этом включатся флокатор и лампы сушилки. Во время флокирования и сушки оператор выполняет операции п. 5, 6, 8, 9. По истечении установленного на пульте управления времени флокирования останавливаются щетки флокатора и гаснут лампы сушилки;
- 11) после окончания рабочего цикла оператор вновь поворачивает печатные столы на одну позицию вправо (против часовой стрелки) и выполняет операции п. 5, 6, 8, 9.

После третьего цикла флокирования и сушки на печатном столе, подходящем к оператору, будут оказываться флокированные и высушенные заготовки, которые он снимает и складывает, а на их место укладывает чистые заготовки. Ворс во флокатор засыпают только после отключения высокого напряжения и при неработающих щетках. Клей на шаблон подливают небольшими количествами вручную, по мере необходимости.

# Приложение Р. Настольная установка УФ-1

Установка состоит из рамы 11, на которой закреплены держатель шаблона 2 и флокатор 6, и поворотной платформы со столами 12. Столы вращают вручную, на 180 градусов в каждом цикле, при этом стол поочередно оказывается под шаблоном и флокатором.

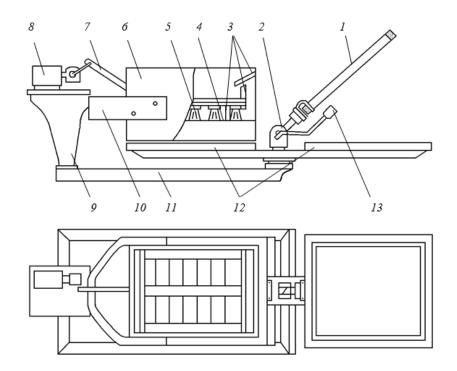



Рис. Р.1. Схема настольной установки УФ-1

| Основные технические характеристики установки УФ- | <i>−1:</i>       |
|---------------------------------------------------|------------------|
| Потребляемая мощность, Вт                         | 170              |
| Напряжение питающей сети, В                       | 220              |
| Размеры печатного стола, мм                       | $500 \times 400$ |
| Точность регулирования времени флокирования, с    | 1                |
| Габариты, мм:                                     |                  |
| длина                                             | 1500             |
| ширина (максимальная при повороте)                | 1200             |
| высота                                            | 550              |

Для работы установка ставится на любой стол. Обслуживает ее один человек. На установке осуществляют печать клеевого рисунка с помощью ручной ракли через сетчатый шаблон и флокирование в полуавтоматическом режиме в течение заданного времени. Флокатор состоит из корпуса из оргстекла, перфорированного электрода 4, являющегося дном флокатора, и щеток 5, укрепленных на рамке. В процессе работы щетки осуществляют возвратно-поступательное движение в горизонтальной плоскости, получая его от двигателя 8 через редуктор и водило 7. При флокировании электрическое

поле высокого напряжения образуется между высоковольтным электродом (перфорированная пластина флокатора) и заземленным печатным столом, имеющим стальное покрытие. Подключение высокого напряжения от источника к электроду осуществляется с помощью штекера.

# Порядок работы на установке

Перед началом работы:

- 1) подключить штекер высокого напряжения;
- 2) засыпать ворс во флокатор;
- 3) установить на пульте управления требуемое время флокирования (10÷30 с в зависимости от качества ворса и рабочего напряжения).

Во время работы:

- 1) уложить лист бумаги на печатный стол, закрепив резинками;
- 2) опустить шаблон, отжав рычаг 13;
- 3) налить клей в шаблон;
- 4) отпечатать рисунок с помощью ручной ракли;
- 5) поднять шаблон вверх до щелчка;
- 6) при необходимости поправить положение листа бумаги;
- 7) включить высокое напряжение на пульте источника высокого напряжения;
- 8) нажать на педаль и повернуть столы на 180 градусов, подведя отпечаток под флокатор;
- 9) нажать на кнопку пуска на пульте управления установкой (включить подачу ворса во флокатор). Отключение флокатора автоматическое;
  - 10) повторить действие по пунктам 1, 2, 4÷6, 8, 9.

При необходимости добавляют ворс и клей во флокатор и шаблон соответственно. Таким образом, в то время как одну заготовку печатает оператор на узле печати, вторая, с печатным рисунком, флокируется.

По окончании работы:

- 1) отключить высокое напряжение на пульте источника питания;
- 2) отключить штекер от электрода флокатора;
- 3) собрать остатки клея с шаблона в емкость для клея;
- 4) вымыть шаблон водой (не горячей);
- 5) собрать ворс из флокатора и очистить установку.

Установка может использоваться для печатания красками, а также для печатания текстильных изделий, для закрепления которых на печатном столе предусмотрены пяльцы.

### Научное издание

Лобова Людмила Владиславовна

# Электрофлокированные материалы с локальным нанесением ворса

# Монография

Издательский редактор Т. Н. Козлова

Учебное электронное издание сетевого распространения

#### Системные требования:

электронное устройство с программным обеспечением для воспроизведения файлов формата PDF

Режим доступа: http://publish.sutd.ru/tp\_get\_file.php?id= $\underline{2019297}$ , по паролю. — Загл. с экрана.

Дата подписания к использованию 28.11.2019 г. Рег. № <u>297/19</u>

ФГБОУВО «СПбГУПТД» Юридический и почтовый адрес: 191186, Санкт-Петербург, ул. Большая Морская, 18. http://sutd.ru/